#!/usr/bin/env python3 from cereal import car from selfdrive.car.chrysler.values import Ecu, ECU_FINGERPRINT, CAR, FINGERPRINTS from selfdrive.car import STD_CARGO_KG, scale_rot_inertia, scale_tire_stiffness, is_ecu_disconnected, gen_empty_fingerprint from selfdrive.car.interfaces import CarInterfaceBase class CarInterface(CarInterfaceBase): @staticmethod def compute_gb(accel, speed): return float(accel) / 3.0 @staticmethod def get_params(candidate, fingerprint=None, has_relay=False, car_fw=None): if fingerprint is None: fingerprint = gen_empty_fingerprint() if car_fw is None: car_fw = [] ret = CarInterfaceBase.get_std_params(candidate, fingerprint, has_relay) ret.carName = "chrysler" ret.safetyModel = car.CarParams.SafetyModel.chrysler # Chrysler port is a community feature, since we don't own one to test ret.communityFeature = True # Speed conversion: 20, 45 mph ret.wheelbase = 3.089 # in meters for Pacifica Hybrid 2017 ret.steerRatio = 16.2 # Pacifica Hybrid 2017 ret.mass = 2858. + STD_CARGO_KG # kg curb weight Pacifica Hybrid 2017 ret.lateralTuning.pid.kpBP, ret.lateralTuning.pid.kiBP = [[9., 20.], [9., 20.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.15, 0.30], [0.03, 0.05]] ret.lateralTuning.pid.kf = 0.00006 # full torque for 10 deg at 80mph means 0.00007818594 ret.steerActuatorDelay = 0.1 ret.steerRateCost = 0.7 ret.steerLimitTimer = 0.4 if candidate in (CAR.JEEP_CHEROKEE, CAR.JEEP_CHEROKEE_2019): ret.wheelbase = 2.91 # in meters ret.steerRatio = 12.7 ret.steerActuatorDelay = 0.2 # in seconds ret.centerToFront = ret.wheelbase * 0.44 ret.minSteerSpeed = 3.8 # m/s if candidate in (CAR.PACIFICA_2019_HYBRID, CAR.PACIFICA_2020, CAR.JEEP_CHEROKEE_2019): # TODO allow 2019 cars to steer down to 13 m/s if already engaged. ret.minSteerSpeed = 17.5 # m/s 17 on the way up, 13 on the way down once engaged. # starting with reasonable value for civic and scaling by mass and wheelbase ret.rotationalInertia = scale_rot_inertia(ret.mass, ret.wheelbase) # TODO: start from empirically derived lateral slip stiffness for the civic and scale by # mass and CG position, so all cars will have approximately similar dyn behaviors ret.tireStiffnessFront, ret.tireStiffnessRear = scale_tire_stiffness(ret.mass, ret.wheelbase, ret.centerToFront) ret.enableCamera = is_ecu_disconnected(fingerprint[0], FINGERPRINTS, ECU_FINGERPRINT, candidate, Ecu.fwdCamera) or has_relay print("ECU Camera Simulated: {0}".format(ret.enableCamera)) return ret # returns a car.CarState def update(self, c, can_strings): # ******************* do can recv ******************* self.cp.update_strings(can_strings) self.cp_cam.update_strings(can_strings) ret = self.CS.update(self.cp, self.cp_cam) ret.canValid = self.cp.can_valid and self.cp_cam.can_valid # speeds ret.steeringRateLimited = self.CC.steer_rate_limited if self.CC is not None else False ret.buttonEvents = [] # events events = self.create_common_events(ret, extra_gears=[car.CarState.GearShifter.low], gas_resume_speed=2.) if ret.vEgo < self.CP.minSteerSpeed: events.add(car.CarEvent.EventName.belowSteerSpeed) ret.events = events.to_msg() # copy back carState packet to CS self.CS.out = ret.as_reader() return self.CS.out # pass in a car.CarControl # to be called @ 100hz def apply(self, c): if (self.CS.frame == -1): return [] # if we haven't seen a frame 220, then do not update. can_sends = self.CC.update(c.enabled, self.CS, c.actuators, c.cruiseControl.cancel, c.hudControl.visualAlert) return can_sends