# An example to compile a small Tensorflow model to extremely portable C code

import os, sys
os.environ["CPU"] = '1'
os.environ["JIT"] = '2'

import numpy as np
import subprocess
import tensorflow as tf
import tf2onnx
from tinygrad.frontend.onnx import OnnxRunner
from tinygrad.tensor import Tensor
from extra.export_model import export_model_clang, compile_net, jit_model

def get_uncompiled_model2(dataset_size=32, output_size=4):
  inputs = tf.keras.Input(shape=(dataset_size,), name="inputs")
  x = tf.keras.layers.Dense(16, activation="relu", name="dense_1")(inputs)
  x = tf.keras.layers.BatchNormalization()(x)
  x = tf.keras.layers.Dense(32, activation="relu", name="dense_2")(x)
  outputs = tf.keras.layers.Dense(output_size, activation="sigmoid", name="predictions")(x)
  model = tf.keras.Model(inputs=inputs, outputs=outputs)
  return model

class TinyOnnx:
  def __init__(self, keras_model):
    input_signature = [tf.TensorSpec([1,32], tf.float32, name='x')]
    onnx_model, _ = tf2onnx.convert.from_keras(keras_model, input_signature, opset=13)
    self.run_onnx = OnnxRunner(onnx_model)

  def forward(self, x):
    return self.run_onnx({"x": x}, debug=False)['predictions']

def compile_onnx_model(onnx_model):
  tinyonnx = TinyOnnx(onnx_model)
  the_input = Tensor.randn(1,32)

  run, special_names = jit_model(tinyonnx, the_input)

  functions, statements, bufs, bufs_to_save = compile_net(run, special_names)
  prg = export_model_clang(functions, statements, bufs, {}, ["input0"], ["output0"])

  the_output = run(the_input)
  cprog = ["#include <string.h>", "#include <stdio.h>", "#include <stdlib.h>"]
  cprog.append(prg)

  # weights
  cprog.append("void initialize(float *weights) {")
  weights = bytes()
  for name,cl in bufs_to_save.items():
    cprog.append(f"memcpy({name}, weights + {len(weights)//4}, {len(cl._buf)*4});")
    weights += bytes(cl._buf)
  cprog.append("}")

  # write the weights to disk
  with open("/tmp/tf_weights", "wb") as f:
    f.write(weights)

  # test program
  cprog.append(f"""int main(int argc, char *argv[]) {{
    // read in the weights from disk
    FILE *f = fopen("/tmp/tf_weights", "rb");
    float *weights = (float *)malloc({len(weights)});
    fread(weights, 1, {len(weights)}, f);
    fclose(f);

    // init the net
    initialize(weights);

    // test run
    float input[32];
    float outputs[4];
    for (int i = 0; i < 32; i++) scanf("%f", &input[i]);
    net(input, outputs);
    printf("%f %f %f %f\\n", outputs[0], outputs[1], outputs[2], outputs[3]);
  }}""")

  # ready the program
  prg = '\n'.join(cprog)
  print(prg)

  # add test weights
  subprocess.check_output(['clang', '-O2', '-lm', '-fPIC', '-x', 'c', '-', '-o', "/tmp/tf_test"], input=prg.encode('utf-8'))

  tinygrad_output = the_output[0].numpy()[0].tolist()
  print("tinygrad:", tinygrad_output, file=sys.stderr)

  c_input = ' '.join(["%f" % x for x in the_input[0].numpy()])+"\n"
  c_output = [float(x) for x in subprocess.check_output(["/tmp/tf_test"], input=c_input.encode('utf-8')).decode('utf-8').strip().split(" ")]
  print("compiled:", c_output, file=sys.stderr)

  np.testing.assert_allclose(tinygrad_output, c_output, atol=1e-5, rtol=1e-5)
  return the_input.numpy(), c_output

if __name__ == "__main__":
  keras_model = get_uncompiled_model2()
  test_input, test_output = compile_onnx_model(keras_model)
  tf_output = keras_model(test_input).numpy()[0]
  print("keras:   ", tf_output, file=sys.stderr)
  np.testing.assert_allclose(tf_output, test_output, atol=1e-5, rtol=1e-5)