# Kernel Creation Tinygrad lazily builds up a graph of Tensor operations. The Tensor graph includes a mix of: - Buffer and Assignment Ops: `BUFFER`, `BUFFER_VIEW`, `COPY`, `ASSIGN` - Movement Ops: `RESHAPE`, `EXPAND`, `PERMUTE`, `PAD`, `SHRINK`, `FLIP` - Compute Ops: `ADD`, `MUL`, `REDUCE_AXIS`, ... `Tensor.kernelize` creates the kernels and buffers needed to realize the output Tensor(s). ## Kernelize flow Let's see how a multiply add Tensor graph becomes a fused elementwise kernel. ```py # initialize 3 input buffers on the device a = Tensor([1]).realize() b = Tensor([2]).realize() c = Tensor([3]).realize() # create the Tensor graph mul = a*b out = mul+c print(mul) # , None)> on METAL with grad None> print(out) # , None)> on METAL with grad None> out.kernelize() print(mul) # , None)> on METAL with grad None> print(out) # , None)> on METAL with grad None> ``` The multiply Tensor stays the same because it is fused. The output Tensor's UOp becomes a new ASSIGN UOp: ```py print(out.lazydata) ``` The first source is the output BUFFER: ``` UOp(Ops.BUFFER, dtypes.int, arg=1, src=( UOp(Ops.DEVICE, dtypes.void, arg='METAL', src=()), UOp(Ops.UNIQUE, dtypes.void, arg=6, src=()),)) ``` And the second source is the KERNEL and its 4 buffer edges (output_buffer, a, b, c): ``` UOp(Ops.KERNEL, dtypes.void, arg=,) (__add__, __mul__)>, src=( UOp(Ops.BUFFER, dtypes.int, arg=1, src=( x1:=UOp(Ops.DEVICE, dtypes.void, arg='METAL', src=()), UOp(Ops.UNIQUE, dtypes.void, arg=6, src=()),)), UOp(Ops.BUFFER, dtypes.int, arg=1, src=( x1, UOp(Ops.UNIQUE, dtypes.void, arg=1, src=()),)), UOp(Ops.BUFFER, dtypes.int, arg=1, src=( x1, UOp(Ops.UNIQUE, dtypes.void, arg=3, src=()),)), UOp(Ops.BUFFER, dtypes.int, arg=1, src=( x1, UOp(Ops.UNIQUE, dtypes.void, arg=5, src=()),)),)) ``` KERNEL describes the compute AST, metadata and memory dependencies. BUFFER holds a reference to the device memory where the output will be stored. Once a Tensor is kernelized, all children will LOAD its BUFFER, instead of fusing it: ```py child = out+2 child.kernelize() print(child.lazydata.src[1].arg.ast) ``` ``` UOp(Ops.SINK, dtypes.void, arg=None, src=( UOp(Ops.STORE, dtypes.void, arg=None, src=( UOp(Ops.DEFINE_GLOBAL, dtypes.int.ptr(1), arg=0, src=()), x2:=UOp(Ops.VIEW, dtypes.void, arg=ShapeTracker(views=(View(shape=(1,), strides=(0,), offset=0, mask=None, contiguous=True),)), src=()), UOp(Ops.ADD, dtypes.int, arg=None, src=( UOp(Ops.LOAD, dtypes.int, arg=None, src=( UOp(Ops.DEFINE_GLOBAL, dtypes.int.ptr(1), arg=1, src=()), x2,)), UOp(Ops.CONST, dtypes.int, arg=2, src=( x2,)),)),)),)) ``` `Tensor.realize` will execute the kernels and write outputs to memory: ```py Tensor.realize(out) print(out) # , )> on METAL with grad None> print(out.item()) # 5 ```
**Summary** - The large Tensor graph is built from a mix of data, compute and movement Ops. - `Tensor.kernelize` splits the Tensor graph into data (BUFFER), compute (KERNEL) and links dependencies with ASSIGN. - `Tensor.realize` executes KERNELs on device and replaces the Tensor graph with just a BUFFER. - Kernelize can be called multiple times on a Tensor. This allows for incrementally building the kernel fusion layout of a large Tensor graph, without having to call `realize` or `schedule`.