import time, struct from typing import Any, Callable, Optional import numpy as np from tinygrad import Tensor, dtypes, Device from tinygrad.uop.ops import UOp, Ops, sint, graph_rewrite from tinygrad.shape.shapetracker import ShapeTracker from tinygrad.tensor import _to_np_dtype from tinygrad.engine.realize import Runner from tinygrad.engine.grouper import view_left from tinygrad.dtype import ConstType, DType from tinygrad.nn.state import get_parameters from tinygrad.helpers import T, unwrap, CI from tinygrad.codegen import full_rewrite from tinygrad.runtime.ops_python import PythonProgram, PythonRenderer, PythonCompiler def derandomize_model(model): for p in get_parameters(model): p.replace(Tensor.empty(p.shape, device=p.device, dtype=p.dtype)) p.realize() def assert_jit_cache_len(fxn, expected_len): if not fxn.jit_cache: assert expected_len == 0, expected_len return # until we have a better way of typing the prg in ExecItem if issubclass(type(fxn.jit_cache[0].prg), Runner) and not type(fxn.jit_cache[0].prg).__name__.endswith('Graph'): assert len(fxn.jit_cache) == expected_len, f"expected {expected_len}, got {len(fxn.jit_cache)}" else: assert len(fxn.jit_cache) == 1, len(fxn.jit_cache) # until we have a better way of typing the prg in ExecItem assert type(fxn.jit_cache[0].prg).__name__.endswith('Graph') assert len(fxn.jit_cache[0].prg.jit_cache) == expected_len def rand_for_dtype(dt:DType, size:int): if dtypes.is_unsigned(dt): return np.random.randint(0, 100, size=size, dtype=_to_np_dtype(dt)) elif dtypes.is_int(dt): return np.random.randint(-100, 100, size=size, dtype=_to_np_dtype(dt)) elif dt == dtypes.bool: return np.random.choice([True, False], size=size) return np.random.uniform(-10, 10, size=size).astype(_to_np_dtype(dt)) def ast_const(dtype:DType, val:ConstType, shape:tuple[sint, ...]=(), st:Optional[ShapeTracker]=None, st_src:Optional[tuple[UOp]]=None) -> UOp: if st_src is None: st_src = (st.to_uop() if st is not None else ShapeTracker.from_shape(()).reshape((1,)*len(shape)).expand(shape).to_uop(),) st = unwrap(st_src[0].st) if all(v.mask is None for v in st.views): return UOp.const(dtype, val).replace(src=(st.to_uop(),)) return graph_rewrite(UOp.const(dtype, val).view(st).valid(), view_left) def timeit(fxn:Callable[..., T], *args, **kwargs) -> tuple[T, float]: st = time.perf_counter_ns() ret = fxn(*args, **kwargs) return ret, (time.perf_counter_ns()-st)*1e-6 def eval_uop(uop:UOp, inputs:list[tuple[DType, list[Any]]]|None=None): allocator = Device['PYTHON'].allocator bufs = [] for buf_dt, data in inputs or []: bufs.append(buf:=allocator.alloc(len(data) * buf_dt.itemsize)) allocator._copyin(buf, memoryview(struct.pack(str(len(data)) + buf_dt.fmt, *data))) g = UOp(Ops.DEFINE_GLOBAL, uop.dtype.ptr(), arg=0, src=()) lst = full_rewrite(UOp.store(g.index(UOp.const(dtypes.int, 0)), uop).sink(), PythonRenderer) prog = PythonProgram("run", PythonCompiler().compile(PythonRenderer().render(lst))) prog(out_buf:=allocator.alloc(uop.dtype.itemsize), *bufs) return out_buf.cast(uop.dtype.fmt).tolist()[0] def not_support_multi_device(): # GPU and CUDA don't support multi device if in CI return CI and REAL_DEV in ("GPU", "CUDA") # NOTE: This will open REMOTE if it's the default device REAL_DEV = (Device.DEFAULT if Device.DEFAULT != "REMOTE" else Device['REMOTE'].properties.real_device)