// flasher state variables uint32_t *prog_ptr = NULL; bool unlocked = false; void spi_init(void); #ifdef uart_ring void debug_ring_callback(uart_ring *ring) {} #endif int comms_control_handler(ControlPacket_t *req, uint8_t *resp) { int resp_len = 0; // flasher machine memset(resp, 0, 4); memcpy(resp+4, "\xde\xad\xd0\x0d", 4); resp[0] = 0xff; resp[2] = req->request; resp[3] = ~req->request; *((uint32_t **)&resp[8]) = prog_ptr; resp_len = 0xc; int sec; switch (req->request) { // **** 0xb0: flasher echo case 0xb0: resp[1] = 0xff; break; // **** 0xb1: unlock flash case 0xb1: if (flash_is_locked()) { flash_unlock(); resp[1] = 0xff; } current_board->set_led(LED_GREEN, 1); unlocked = true; prog_ptr = (uint32_t *)APP_START_ADDRESS; break; // **** 0xb2: erase sector case 0xb2: sec = req->param1; if (flash_erase_sector(sec, unlocked)) { resp[1] = 0xff; } break; // **** 0xc1: get hardware type case 0xc1: resp[0] = hw_type; resp_len = 1; break; // **** 0xc3: fetch MCU UID case 0xc3: #ifdef UID_BASE (void)memcpy(resp, ((uint8_t *)UID_BASE), 12); resp_len = 12; #endif break; // **** 0xd0: fetch serial number case 0xd0: #ifndef STM32F2 // addresses are OTP if (req->param1 == 1) { memcpy(resp, (void *)DEVICE_SERIAL_NUMBER_ADDRESS, 0x10); resp_len = 0x10; } else { get_provision_chunk(resp); resp_len = PROVISION_CHUNK_LEN; } #endif break; // **** 0xd1: enter bootloader mode case 0xd1: // this allows reflashing of the bootstub switch (req->param1) { case 0: print("-> entering bootloader\n"); enter_bootloader_mode = ENTER_BOOTLOADER_MAGIC; NVIC_SystemReset(); break; case 1: print("-> entering softloader\n"); enter_bootloader_mode = ENTER_SOFTLOADER_MAGIC; NVIC_SystemReset(); break; } break; // **** 0xd6: get version case 0xd6: COMPILE_TIME_ASSERT(sizeof(gitversion) <= USBPACKET_MAX_SIZE); memcpy(resp, gitversion, sizeof(gitversion)); resp_len = sizeof(gitversion); break; // **** 0xd8: reset ST case 0xd8: flush_write_buffer(); NVIC_SystemReset(); break; } return resp_len; } void comms_can_write(uint8_t *data, uint32_t len) { UNUSED(data); UNUSED(len); } int comms_can_read(uint8_t *data, uint32_t max_len) { UNUSED(data); UNUSED(max_len); return 0; } void refresh_can_tx_slots_available(void) {} void comms_endpoint2_write(uint8_t *data, uint32_t len) { current_board->set_led(LED_RED, 0); for (uint32_t i = 0; i < len/4; i++) { flash_write_word(prog_ptr, *(uint32_t*)(data+(i*4))); //*(uint64_t*)(&spi_tx_buf[0x30+(i*4)]) = *prog_ptr; prog_ptr++; } current_board->set_led(LED_RED, 1); } int spi_cb_rx(uint8_t *data, int len, uint8_t *data_out) { UNUSED(len); ControlPacket_t control_req; int resp_len = 0; switch (data[0]) { case 0: // control transfer control_req.request = ((USB_Setup_TypeDef *)(data+4))->b.bRequest; control_req.param1 = ((USB_Setup_TypeDef *)(data+4))->b.wValue.w; control_req.param2 = ((USB_Setup_TypeDef *)(data+4))->b.wIndex.w; control_req.length = ((USB_Setup_TypeDef *)(data+4))->b.wLength.w; resp_len = comms_control_handler(&control_req, data_out); break; case 2: // ep 2, flash! comms_endpoint2_write(data+4, data[2]); break; } return resp_len; } #ifdef PEDAL #include "stm32fx/llbxcan.h" #define CANx CAN1 #define CAN_BL_INPUT 0x1 #define CAN_BL_OUTPUT 0x2 void CAN1_TX_IRQ_Handler(void) { // clear interrupt CANx->TSR |= CAN_TSR_RQCP0; } #define ISOTP_BUF_SIZE 0x110 uint8_t isotp_buf[ISOTP_BUF_SIZE]; uint8_t *isotp_buf_ptr = NULL; int isotp_buf_remain = 0; uint8_t isotp_buf_out[ISOTP_BUF_SIZE]; uint8_t *isotp_buf_out_ptr = NULL; int isotp_buf_out_remain = 0; int isotp_buf_out_idx = 0; void bl_can_send(uint8_t *odat) { // wait for send while (!(CANx->TSR & CAN_TSR_TME0)); // send continue CANx->sTxMailBox[0].TDLR = ((uint32_t*)odat)[0]; CANx->sTxMailBox[0].TDHR = ((uint32_t*)odat)[1]; CANx->sTxMailBox[0].TDTR = 8; CANx->sTxMailBox[0].TIR = (CAN_BL_OUTPUT << 21) | 1; } void CAN1_RX0_IRQ_Handler(void) { while (CANx->RF0R & CAN_RF0R_FMP0) { if ((CANx->sFIFOMailBox[0].RIR>>21) == CAN_BL_INPUT) { uint8_t dat[8]; for (int i = 0; i < 8; i++) { dat[i] = GET_MAILBOX_BYTE(&CANx->sFIFOMailBox[0], i); } uint8_t odat[8]; uint8_t type = dat[0] & 0xF0; if (type == 0x30) { // continue while (isotp_buf_out_remain > 0) { // wait for send while (!(CANx->TSR & CAN_TSR_TME0)); odat[0] = 0x20 | isotp_buf_out_idx; memcpy(odat+1, isotp_buf_out_ptr, 7); isotp_buf_out_remain -= 7; isotp_buf_out_ptr += 7; isotp_buf_out_idx++; bl_can_send(odat); } } else if (type == 0x20) { if (isotp_buf_remain > 0) { memcpy(isotp_buf_ptr, dat+1, 7); isotp_buf_ptr += 7; isotp_buf_remain -= 7; } if (isotp_buf_remain <= 0) { int len = isotp_buf_ptr - isotp_buf + isotp_buf_remain; // call the function memset(isotp_buf_out, 0, ISOTP_BUF_SIZE); isotp_buf_out_remain = spi_cb_rx(isotp_buf, len, isotp_buf_out); isotp_buf_out_ptr = isotp_buf_out; isotp_buf_out_idx = 0; // send initial if (isotp_buf_out_remain <= 7) { odat[0] = isotp_buf_out_remain; memcpy(odat+1, isotp_buf_out_ptr, isotp_buf_out_remain); } else { odat[0] = 0x10 | (isotp_buf_out_remain>>8); odat[1] = isotp_buf_out_remain & 0xFF; memcpy(odat+2, isotp_buf_out_ptr, 6); isotp_buf_out_remain -= 6; isotp_buf_out_ptr += 6; isotp_buf_out_idx++; } bl_can_send(odat); } } else if (type == 0x10) { int len = ((dat[0]&0xF)<<8) | dat[1]; // setup buffer isotp_buf_ptr = isotp_buf; memcpy(isotp_buf_ptr, dat+2, 6); if (len < (ISOTP_BUF_SIZE-0x10)) { isotp_buf_ptr += 6; isotp_buf_remain = len-6; } memset(odat, 0, 8); odat[0] = 0x30; bl_can_send(odat); } } // next CANx->RF0R |= CAN_RF0R_RFOM0; } } void CAN1_SCE_IRQ_Handler(void) { llcan_clear_send(CANx); } #endif void soft_flasher_start(void) { #ifdef PEDAL REGISTER_INTERRUPT(CAN1_TX_IRQn, CAN1_TX_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_1) REGISTER_INTERRUPT(CAN1_RX0_IRQn, CAN1_RX0_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_1) REGISTER_INTERRUPT(CAN1_SCE_IRQn, CAN1_SCE_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_1) #endif print("\n\n\n************************ FLASHER START ************************\n"); enter_bootloader_mode = 0; flasher_peripherals_init(); // pedal has the canloader #ifdef PEDAL RCC->APB1ENR |= RCC_APB1ENR_CAN1EN; // B8,B9: CAN 1 set_gpio_alternate(GPIOB, 8, GPIO_AF9_CAN1); set_gpio_alternate(GPIOB, 9, GPIO_AF9_CAN1); current_board->enable_can_transceiver(1, true); // init can llcan_set_speed(CANx, 5000, false, false); llcan_init(CANx); #endif gpio_usart2_init(); gpio_usb_init(); // enable USB usb_init(); // enable SPI if (current_board->has_spi) { gpio_spi_init(); spi_init(); } // green LED on for flashing current_board->set_led(LED_GREEN, 1); enable_interrupts(); for (;;) { // blink the green LED fast current_board->set_led(LED_GREEN, 0); delay(500000); current_board->set_led(LED_GREEN, 1); delay(500000); } }