#pragma once #define GET_BIT(msg, b) (((msg)->data[((b) / 8U)] >> ((b) % 8U)) & 0x1U) #define GET_BYTE(msg, b) ((msg)->data[(b)]) #define GET_FLAG(value, mask) (((__typeof__(mask))(value) & (mask)) == (mask)) #define SET_ADDR_CHECKS(name) ((addr_checks){(name), (sizeof((name)) / sizeof((name)[0]))}) uint32_t GET_BYTES(const CANPacket_t *msg, int start, int len) { uint32_t ret = 0U; for (int i = 0; i < len; i++) { const uint8_t shift = i * 8; ret |= (((uint32_t)msg->data[start + i]) << shift); } return ret; } const int MAX_WRONG_COUNTERS = 5; const uint8_t MAX_MISSED_MSGS = 10U; #define MAX_ADDR_CHECK_MSGS 3U #define MAX_SAMPLE_VALS 6 // used to represent floating point vehicle speed in a sample_t #define VEHICLE_SPEED_FACTOR 100.0 // sample struct that keeps 6 samples in memory struct sample_t { int values[MAX_SAMPLE_VALS]; int min; int max; } sample_t_default = {.values = {0}, .min = 0, .max = 0}; // safety code requires floats struct lookup_t { float x[3]; float y[3]; }; typedef struct { int addr; int bus; int len; } CanMsg; typedef enum { TorqueMotorLimited, // torque steering command, limited by EPS output torque TorqueDriverLimited, // torque steering command, limited by driver's input torque } SteeringControlType; typedef struct { // torque cmd limits const int max_steer; const int max_rate_up; const int max_rate_down; const int max_rt_delta; const uint32_t max_rt_interval; const SteeringControlType type; // driver torque limits const int driver_torque_allowance; const int driver_torque_factor; // motor torque limits const int max_torque_error; // safety around steer req bit const int min_valid_request_frames; const int max_invalid_request_frames; const uint32_t min_valid_request_rt_interval; const bool has_steer_req_tolerance; // angle cmd limits const float angle_deg_to_can; const struct lookup_t angle_rate_up_lookup; const struct lookup_t angle_rate_down_lookup; const int max_angle_error; // used to limit error between meas and cmd while enabled const float angle_error_min_speed; // minimum speed to start limiting angle error const bool enforce_angle_error; // enables max_angle_error check const bool inactive_angle_is_zero; // if false, enforces angle near meas when disabled (default) } SteeringLimits; typedef struct { // acceleration cmd limits const int max_accel; const int min_accel; const int inactive_accel; // gas & brake cmd limits // inactive and min gas are 0 on most safety modes const int max_gas; const int min_gas; const int inactive_gas; const int max_brake; // transmission rpm limits const int max_transmission_rpm; const int min_transmission_rpm; const int inactive_transmission_rpm; // speed cmd limits const int inactive_speed; } LongitudinalLimits; typedef struct { const int addr; const int bus; const int len; const bool check_checksum; // true is checksum check is performed const uint8_t max_counter; // maximum value of the counter. 0 means that the counter check is skipped const bool quality_flag; // true is quality flag check is performed const uint32_t expected_timestep; // expected time between message updates [us] } CanMsgCheck; // params and flags about checksum, counter and frequency checks for each monitored address typedef struct { // const params const CanMsgCheck msg[MAX_ADDR_CHECK_MSGS]; // check either messages (e.g. honda steer) // dynamic flags bool msg_seen; int index; // if multiple messages are allowed to be checked, this stores the index of the first one seen. only msg[msg_index] will be used bool valid_checksum; // true if and only if checksum check is passed int wrong_counters; // counter of wrong counters, saturated between 0 and MAX_WRONG_COUNTERS bool valid_quality_flag; // true if the message's quality/health/status signals are valid uint8_t last_counter; // last counter value uint32_t last_timestamp; // micro-s bool lagging; // true if and only if the time between updates is excessive } AddrCheckStruct; typedef struct { AddrCheckStruct *check; int len; } addr_checks; int safety_rx_hook(CANPacket_t *to_push); int safety_tx_hook(CANPacket_t *to_send); int safety_tx_lin_hook(int lin_num, uint8_t *data, int len); uint32_t get_ts_elapsed(uint32_t ts, uint32_t ts_last); int to_signed(int d, int bits); void update_sample(struct sample_t *sample, int sample_new); void reset_sample(struct sample_t *sample); bool max_limit_check(int val, const int MAX, const int MIN); bool angle_dist_to_meas_check(int val, struct sample_t *val_meas, const int MAX_ERROR, const int MAX_VAL); bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas, const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR); bool driver_limit_check(int val, int val_last, struct sample_t *val_driver, const int MAX, const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ALLOWANCE, const int DRIVER_FACTOR); bool get_longitudinal_allowed(void); bool rt_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA); float interpolate(struct lookup_t xy, float x); int ROUND(float val); void gen_crc_lookup_table_8(uint8_t poly, uint8_t crc_lut[]); void gen_crc_lookup_table_16(uint16_t poly, uint16_t crc_lut[]); bool msg_allowed(CANPacket_t *to_send, const CanMsg msg_list[], int len); int get_addr_check_index(CANPacket_t *to_push, AddrCheckStruct addr_list[], const int len); void update_counter(AddrCheckStruct addr_list[], int index, uint8_t counter); void update_addr_timestamp(AddrCheckStruct addr_list[], int index); bool is_msg_valid(AddrCheckStruct addr_list[], int index); bool addr_safety_check(CANPacket_t *to_push, const addr_checks *rx_checks, uint32_t (*get_checksum)(CANPacket_t *to_push), uint32_t (*compute_checksum)(CANPacket_t *to_push), uint8_t (*get_counter)(CANPacket_t *to_push), bool (*get_quality_flag_valid)(CANPacket_t *to_push)); void generic_rx_checks(bool stock_ecu_detected); void relay_malfunction_set(void); void relay_malfunction_reset(void); bool steer_torque_cmd_checks(int desired_torque, int steer_req, const SteeringLimits limits); bool steer_angle_cmd_checks(int desired_angle, bool steer_control_enabled, const SteeringLimits limits); bool longitudinal_accel_checks(int desired_accel, const LongitudinalLimits limits); bool longitudinal_speed_checks(int desired_speed, const LongitudinalLimits limits); bool longitudinal_gas_checks(int desired_gas, const LongitudinalLimits limits); bool longitudinal_transmission_rpm_checks(int desired_transmission_rpm, const LongitudinalLimits limits); bool longitudinal_brake_checks(int desired_brake, const LongitudinalLimits limits); bool longitudinal_interceptor_checks(CANPacket_t *to_send); void pcm_cruise_check(bool cruise_engaged); typedef const addr_checks* (*safety_hook_init)(uint16_t param); typedef int (*rx_hook)(CANPacket_t *to_push); typedef int (*tx_hook)(CANPacket_t *to_send); typedef int (*tx_lin_hook)(int lin_num, uint8_t *data, int len); typedef int (*fwd_hook)(int bus_num, int addr); typedef struct { safety_hook_init init; rx_hook rx; tx_hook tx; tx_lin_hook tx_lin; fwd_hook fwd; } safety_hooks; void safety_tick(const addr_checks *addr_checks); // This can be set by the safety hooks bool controls_allowed = false; bool relay_malfunction = false; bool gas_interceptor_detected = false; int gas_interceptor_prev = 0; bool gas_pressed = false; bool gas_pressed_prev = false; bool brake_pressed = false; bool brake_pressed_prev = false; bool regen_braking = false; bool regen_braking_prev = false; bool cruise_engaged_prev = false; struct sample_t vehicle_speed; bool vehicle_moving = false; bool acc_main_on = false; // referred to as "ACC off" in ISO 15622:2018 int cruise_button_prev = 0; bool safety_rx_checks_invalid = false; // for safety modes with torque steering control int desired_torque_last = 0; // last desired steer torque int rt_torque_last = 0; // last desired torque for real time check int valid_steer_req_count = 0; // counter for steer request bit matching non-zero torque int invalid_steer_req_count = 0; // counter to allow multiple frames of mismatching torque request bit struct sample_t torque_meas; // last 6 motor torques produced by the eps struct sample_t torque_driver; // last 6 driver torques measured uint32_t ts_torque_check_last = 0; uint32_t ts_steer_req_mismatch_last = 0; // last timestamp steer req was mismatched with torque // state for controls_allowed timeout logic bool heartbeat_engaged = false; // openpilot enabled, passed in heartbeat USB command uint32_t heartbeat_engaged_mismatches = 0; // count of mismatches between heartbeat_engaged and controls_allowed // for safety modes with angle steering control uint32_t ts_angle_last = 0; int desired_angle_last = 0; struct sample_t angle_meas; // last 6 steer angles/curvatures // This can be set with a USB command // It enables features that allow alternative experiences, like not disengaging on gas press // It is only either 0 or 1 on mainline comma.ai openpilot #define ALT_EXP_DISABLE_DISENGAGE_ON_GAS 1 // If using this flag, make sure to communicate to your users that a stock safety feature is now disabled. #define ALT_EXP_DISABLE_STOCK_AEB 2 // If using this flag, be aware that harder braking is more likely to lead to rear endings, // and that alone this flag doesn't make braking compliant because there's also a time element. // Setting this flag is used for allowing the full -5.0 to +4.0 m/s^2 at lower speeds // See ISO 15622:2018 for more information. #define ALT_EXP_RAISE_LONGITUDINAL_LIMITS_TO_ISO_MAX 8 int alternative_experience = 0; // time since safety mode has been changed uint32_t safety_mode_cnt = 0U; // allow 1s of transition timeout after relay changes state before assessing malfunctioning const uint32_t RELAY_TRNS_TIMEOUT = 1U;