import numpy as np class KF1D: # this EKF assumes constant covariance matrix, so calculations are much simpler # the Kalman gain also needs to be precomputed using the control module def __init__(self, x0, A, C, K): self.x = x0 self.A = A self.C = np.atleast_2d(C) self.K = K self.A_K = self.A - np.dot(self.K, self.C) self.x0_0 = x0[0][0] self.x1_0 = x0[1][0] self.A0_0 = A[0][0] self.A0_1 = A[0][1] self.A1_0 = A[1][0] self.A1_1 = A[1][1] self.C0_0 = C[0] self.C0_1 = C[1] self.K0_0 = K[0][0] self.K1_0 = K[1][0] self.A_K_0 = self.A0_0 - self.K0_0 * self.C0_0 self.A_K_1 = self.A0_1 - self.K0_0 * self.C0_1 self.A_K_2 = self.A1_0 - self.K1_0 * self.C0_0 self.A_K_3 = self.A1_1 - self.K1_0 * self.C0_1 # K matrix needs to be pre-computed as follow: # import control # (x, l, K) = control.dare(np.transpose(self.A), np.transpose(self.C), Q, R) # self.K = np.transpose(K) #def update(self, meas): # self.x = np.dot(self.A_K, self.x) + np.dot(self.K, meas) # return self.x def update(self, meas): x0_0 = self.A_K_0 * self.x0_0 + self.A_K_1 * self.x1_0 + self.K0_0 * meas x1_0 = self.A_K_2 * self.x0_0 + self.A_K_3 * self.x1_0 + self.K1_0 * meas self.x0_0 = x0_0 self.x1_0 = x1_0 return [self.x0_0, self.x1_0]