# -*- coding: future_fstrings -*- # # Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren, # Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor, # Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan, # Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl # # This file is part of acados. # # The 2-Clause BSD License # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE.; # import sys, os, json import numpy as np from ctypes import * from copy import deepcopy from .generate_c_code_explicit_ode import generate_c_code_explicit_ode from .generate_c_code_implicit_ode import generate_c_code_implicit_ode from .generate_c_code_gnsf import generate_c_code_gnsf from .acados_sim import AcadosSim from .acados_ocp import AcadosOcp from .acados_model import acados_model_strip_casadi_symbolics from .utils import is_column, render_template, format_class_dict, np_array_to_list,\ make_model_consistent, set_up_imported_gnsf_model, get_python_interface_path from .builders import CMakeBuilder def make_sim_dims_consistent(acados_sim): dims = acados_sim.dims model = acados_sim.model # nx if is_column(model.x): dims.nx = model.x.shape[0] else: raise Exception("model.x should be column vector!") # nu if is_column(model.u): dims.nu = model.u.shape[0] elif model.u == None or model.u == []: dims.nu = 0 else: raise Exception("model.u should be column vector or None!") # nz if is_column(model.z): dims.nz = model.z.shape[0] elif model.z == None or model.z == []: dims.nz = 0 else: raise Exception("model.z should be column vector or None!") # np if is_column(model.p): dims.np = model.p.shape[0] elif model.p == None or model.p == []: dims.np = 0 else: raise Exception("model.p should be column vector or None!") def get_sim_layout(): python_interface_path = get_python_interface_path() abs_path = os.path.join(python_interface_path, 'acados_sim_layout.json') with open(abs_path, 'r') as f: sim_layout = json.load(f) return sim_layout def sim_formulation_json_dump(acados_sim, json_file='acados_sim.json'): # Load acados_sim structure description sim_layout = get_sim_layout() # Copy input sim object dictionary sim_dict = dict(deepcopy(acados_sim).__dict__) for key, v in sim_layout.items(): # skip non dict attributes if not isinstance(v, dict): continue # Copy sim object attributes dictionaries sim_dict[key]=dict(getattr(acados_sim, key).__dict__) sim_dict['model'] = acados_model_strip_casadi_symbolics(sim_dict['model']) sim_json = format_class_dict(sim_dict) with open(json_file, 'w') as f: json.dump(sim_json, f, default=np_array_to_list, indent=4, sort_keys=True) def sim_get_default_cmake_builder() -> CMakeBuilder: """ If :py:class:`~acados_template.acados_sim_solver.AcadosSimSolver` is used with `CMake` this function returns a good first setting. :return: default :py:class:`~acados_template.builders.CMakeBuilder` """ cmake_builder = CMakeBuilder() cmake_builder.options_on = ['BUILD_ACADOS_SIM_SOLVER_LIB'] return cmake_builder def sim_render_templates(json_file, model_name, code_export_dir, cmake_options: CMakeBuilder = None): # setting up loader and environment json_path = os.path.join(os.getcwd(), json_file) if not os.path.exists(json_path): raise Exception(f"{json_path} not found!") template_dir = code_export_dir ## Render templates in_file = 'acados_sim_solver.in.c' out_file = f'acados_sim_solver_{model_name}.c' render_template(in_file, out_file, template_dir, json_path) in_file = 'acados_sim_solver.in.h' out_file = f'acados_sim_solver_{model_name}.h' render_template(in_file, out_file, template_dir, json_path) # Builder if cmake_options is not None: in_file = 'CMakeLists.in.txt' out_file = 'CMakeLists.txt' render_template(in_file, out_file, template_dir, json_path) else: in_file = 'Makefile.in' out_file = 'Makefile' render_template(in_file, out_file, template_dir, json_path) in_file = 'main_sim.in.c' out_file = f'main_sim_{model_name}.c' render_template(in_file, out_file, template_dir, json_path) ## folder model template_dir = os.path.join(code_export_dir, model_name + '_model') in_file = 'model.in.h' out_file = f'{model_name}_model.h' render_template(in_file, out_file, template_dir, json_path) def sim_generate_casadi_functions(acados_sim): model = acados_sim.model model = make_model_consistent(model) integrator_type = acados_sim.solver_options.integrator_type opts = dict(generate_hess = acados_sim.solver_options.sens_hess, code_export_directory = acados_sim.code_export_directory) # generate external functions if integrator_type == 'ERK': generate_c_code_explicit_ode(model, opts) elif integrator_type == 'IRK': generate_c_code_implicit_ode(model, opts) elif integrator_type == 'GNSF': generate_c_code_gnsf(model, opts) class AcadosSimSolver: """ Class to interact with the acados integrator C object. :param acados_sim: type :py:class:`~acados_template.acados_ocp.AcadosOcp` (takes values to generate an instance :py:class:`~acados_template.acados_sim.AcadosSim`) or :py:class:`~acados_template.acados_sim.AcadosSim` :param json_file: Default: 'acados_sim.json' :param build: Default: True :param cmake_builder: type :py:class:`~acados_template.utils.CMakeBuilder` generate a `CMakeLists.txt` and use the `CMake` pipeline instead of a `Makefile` (`CMake` seems to be the better option in conjunction with `MS Visual Studio`); default: `None` """ def __init__(self, acados_sim_, json_file='acados_sim.json', build=True, cmake_builder: CMakeBuilder = None): self.solver_created = False if isinstance(acados_sim_, AcadosOcp): # set up acados_sim_ acados_sim = AcadosSim() acados_sim.model = acados_sim_.model acados_sim.dims.nx = acados_sim_.dims.nx acados_sim.dims.nu = acados_sim_.dims.nu acados_sim.dims.nz = acados_sim_.dims.nz acados_sim.dims.np = acados_sim_.dims.np acados_sim.solver_options.integrator_type = acados_sim_.solver_options.integrator_type acados_sim.code_export_directory = acados_sim_.code_export_directory elif isinstance(acados_sim_, AcadosSim): acados_sim = acados_sim_ acados_sim.__problem_class = 'SIM' model_name = acados_sim.model.name make_sim_dims_consistent(acados_sim) # reuse existing json and casadi functions, when creating integrator from ocp if isinstance(acados_sim_, AcadosSim): if acados_sim.solver_options.integrator_type == 'GNSF': set_up_imported_gnsf_model(acados_sim) sim_generate_casadi_functions(acados_sim) sim_formulation_json_dump(acados_sim, json_file) code_export_dir = acados_sim.code_export_directory if build: # render templates sim_render_templates(json_file, model_name, code_export_dir, cmake_builder) # Compile solver cwd = os.getcwd() code_export_dir = os.path.abspath(code_export_dir) os.chdir(code_export_dir) if cmake_builder is not None: cmake_builder.exec(code_export_dir) else: os.system('make sim_shared_lib') os.chdir(cwd) self.sim_struct = acados_sim model_name = self.sim_struct.model.name self.model_name = model_name # Load acados library to avoid unloading the library. # This is necessary if acados was compiled with OpenMP, since the OpenMP threads can't be destroyed. # Unloading a library which uses OpenMP results in a segfault (on any platform?). # see [https://stackoverflow.com/questions/34439956/vc-crash-when-freeing-a-dll-built-with-openmp] # or [https://python.hotexamples.com/examples/_ctypes/-/dlclose/python-dlclose-function-examples.html] libacados_name = 'libacados.so' libacados_filepath = os.path.join(acados_sim.acados_lib_path, libacados_name) self.__acados_lib = CDLL(libacados_filepath) # find out if acados was compiled with OpenMP try: self.__acados_lib_uses_omp = getattr(self.__acados_lib, 'omp_get_thread_num') is not None except AttributeError as e: self.__acados_lib_uses_omp = False if self.__acados_lib_uses_omp: print('acados was compiled with OpenMP.') else: print('acados was compiled without OpenMP.') # Ctypes lib_prefix = 'lib' lib_ext = '.so' if os.name == 'nt': lib_prefix = '' lib_ext = '' self.shared_lib_name = os.path.join(code_export_dir, f'{lib_prefix}acados_sim_solver_{model_name}{lib_ext}') print(f'self.shared_lib_name = "{self.shared_lib_name}"') self.shared_lib = CDLL(self.shared_lib_name) # create capsule getattr(self.shared_lib, f"{model_name}_acados_sim_solver_create_capsule").restype = c_void_p self.capsule = getattr(self.shared_lib, f"{model_name}_acados_sim_solver_create_capsule")() # create solver getattr(self.shared_lib, f"{model_name}_acados_sim_create").argtypes = [c_void_p] getattr(self.shared_lib, f"{model_name}_acados_sim_create").restype = c_int assert getattr(self.shared_lib, f"{model_name}_acados_sim_create")(self.capsule)==0 self.solver_created = True getattr(self.shared_lib, f"{model_name}_acados_get_sim_opts").argtypes = [c_void_p] getattr(self.shared_lib, f"{model_name}_acados_get_sim_opts").restype = c_void_p self.sim_opts = getattr(self.shared_lib, f"{model_name}_acados_get_sim_opts")(self.capsule) getattr(self.shared_lib, f"{model_name}_acados_get_sim_dims").argtypes = [c_void_p] getattr(self.shared_lib, f"{model_name}_acados_get_sim_dims").restype = c_void_p self.sim_dims = getattr(self.shared_lib, f"{model_name}_acados_get_sim_dims")(self.capsule) getattr(self.shared_lib, f"{model_name}_acados_get_sim_config").argtypes = [c_void_p] getattr(self.shared_lib, f"{model_name}_acados_get_sim_config").restype = c_void_p self.sim_config = getattr(self.shared_lib, f"{model_name}_acados_get_sim_config")(self.capsule) getattr(self.shared_lib, f"{model_name}_acados_get_sim_out").argtypes = [c_void_p] getattr(self.shared_lib, f"{model_name}_acados_get_sim_out").restype = c_void_p self.sim_out = getattr(self.shared_lib, f"{model_name}_acados_get_sim_out")(self.capsule) getattr(self.shared_lib, f"{model_name}_acados_get_sim_in").argtypes = [c_void_p] getattr(self.shared_lib, f"{model_name}_acados_get_sim_in").restype = c_void_p self.sim_in = getattr(self.shared_lib, f"{model_name}_acados_get_sim_in")(self.capsule) getattr(self.shared_lib, f"{model_name}_acados_get_sim_solver").argtypes = [c_void_p] getattr(self.shared_lib, f"{model_name}_acados_get_sim_solver").restype = c_void_p self.sim_solver = getattr(self.shared_lib, f"{model_name}_acados_get_sim_solver")(self.capsule) nu = self.sim_struct.dims.nu nx = self.sim_struct.dims.nx nz = self.sim_struct.dims.nz self.gettable = { 'x': nx, 'xn': nx, 'u': nu, 'z': nz, 'S_forw': nx*(nx+nu), 'Sx': nx*nx, 'Su': nx*nu, 'S_adj': nx+nu, 'S_hess': (nx+nu)*(nx+nu), 'S_algebraic': (nz)*(nx+nu), } self.settable = ['S_adj', 'T', 'x', 'u', 'xdot', 'z', 'p'] # S_forw def solve(self): """ Solve the simulation problem with current input. """ getattr(self.shared_lib, f"{self.model_name}_acados_sim_solve").argtypes = [c_void_p] getattr(self.shared_lib, f"{self.model_name}_acados_sim_solve").restype = c_int status = getattr(self.shared_lib, f"{self.model_name}_acados_sim_solve")(self.capsule) return status def get(self, field_): """ Get the last solution of the solver. :param str field: string in ['x', 'u', 'z', 'S_forw', 'Sx', 'Su', 'S_adj', 'S_hess', 'S_algebraic'] """ field = field_ field = field.encode('utf-8') if field_ in self.gettable.keys(): # allocate array dims = self.gettable[field_] out = np.ascontiguousarray(np.zeros((dims,)), dtype=np.float64) out_data = cast(out.ctypes.data, POINTER(c_double)) self.shared_lib.sim_out_get.argtypes = [c_void_p, c_void_p, c_void_p, c_char_p, c_void_p] self.shared_lib.sim_out_get(self.sim_config, self.sim_dims, self.sim_out, field, out_data) if field_ == 'S_forw': nu = self.sim_struct.dims.nu nx = self.sim_struct.dims.nx out = out.reshape(nx, nx+nu, order='F') elif field_ == 'Sx': nx = self.sim_struct.dims.nx out = out.reshape(nx, nx, order='F') elif field_ == 'Su': nx = self.sim_struct.dims.nx nu = self.sim_struct.dims.nu out = out.reshape(nx, nu, order='F') elif field_ == 'S_hess': nx = self.sim_struct.dims.nx nu = self.sim_struct.dims.nu out = out.reshape(nx+nu, nx+nu, order='F') elif field_ == 'S_algebraic': nx = self.sim_struct.dims.nx nu = self.sim_struct.dims.nu nz = self.sim_struct.dims.nz out = out.reshape(nz, nx+nu, order='F') else: raise Exception(f'AcadosSimSolver.get(): Unknown field {field_},' \ f' available fields are {", ".join(self.gettable.keys())}') return out def set(self, field_, value_): """ Set numerical data inside the solver. :param field: string in ['p', 'S_adj', 'T', 'x', 'u', 'xdot', 'z'] :param value: the value with appropriate size. """ # cast value_ to avoid conversion issues if isinstance(value_, (float, int)): value_ = np.array([value_]) value_ = value_.astype(float) value_data = cast(value_.ctypes.data, POINTER(c_double)) value_data_p = cast((value_data), c_void_p) field = field_ field = field.encode('utf-8') # treat parameters separately if field_ == 'p': model_name = self.sim_struct.model.name getattr(self.shared_lib, f"{model_name}_acados_sim_update_params").argtypes = [c_void_p, POINTER(c_double), c_int] value_data = cast(value_.ctypes.data, POINTER(c_double)) getattr(self.shared_lib, f"{model_name}_acados_sim_update_params")(self.capsule, value_data, value_.shape[0]) return else: # dimension check dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc) dims_data = cast(dims.ctypes.data, POINTER(c_int)) self.shared_lib.sim_dims_get_from_attr.argtypes = [c_void_p, c_void_p, c_char_p, POINTER(c_int)] self.shared_lib.sim_dims_get_from_attr(self.sim_config, self.sim_dims, field, dims_data) value_ = np.ravel(value_, order='F') value_shape = value_.shape if len(value_shape) == 1: value_shape = (value_shape[0], 0) if value_shape != tuple(dims): raise Exception('AcadosSimSolver.set(): mismatching dimension' \ ' for field "{}" with dimension {} (you have {})'.format(field_, tuple(dims), value_shape)) # set if field_ in ['xdot', 'z']: self.shared_lib.sim_solver_set.argtypes = [c_void_p, c_char_p, c_void_p] self.shared_lib.sim_solver_set(self.sim_solver, field, value_data_p) elif field_ in self.settable: self.shared_lib.sim_in_set.argtypes = [c_void_p, c_void_p, c_void_p, c_char_p, c_void_p] self.shared_lib.sim_in_set(self.sim_config, self.sim_dims, self.sim_in, field, value_data_p) else: raise Exception(f'AcadosSimSolver.set(): Unknown field {field_},' \ f' available fields are {", ".join(self.settable)}') return def __del__(self): if self.solver_created: getattr(self.shared_lib, f"{self.model_name}_acados_sim_free").argtypes = [c_void_p] getattr(self.shared_lib, f"{self.model_name}_acados_sim_free").restype = c_int getattr(self.shared_lib, f"{self.model_name}_acados_sim_free")(self.capsule) getattr(self.shared_lib, f"{self.model_name}_acados_sim_solver_free_capsule").argtypes = [c_void_p] getattr(self.shared_lib, f"{self.model_name}_acados_sim_solver_free_capsule").restype = c_int getattr(self.shared_lib, f"{self.model_name}_acados_sim_solver_free_capsule")(self.capsule) try: self.dlclose(self.shared_lib._handle) except: pass