/* * Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren, * Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor, * Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan, * Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl * * This file is part of acados. * * The 2-Clause BSD License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE.; */ // standard #include #include // acados #include "acados/utils/print.h" #include "acados/utils/math.h" #include "acados_c/ocp_nlp_interface.h" #include "acados_c/external_function_interface.h" #include "acados_solver_{{ model.name }}.h" int main() { nlp_solver_capsule *acados_ocp_capsule = {{ model.name }}_acados_create_capsule(); int status = {{ model.name }}_acados_create(acados_ocp_capsule); if (status) { printf("{{ model.name }}_acados_create() returned status %d. Exiting.\n", status); exit(1); } ocp_nlp_config *nlp_config = {{ model.name }}_acados_get_nlp_config(acados_ocp_capsule); ocp_nlp_dims *nlp_dims = {{ model.name }}_acados_get_nlp_dims(acados_ocp_capsule); ocp_nlp_in *nlp_in = {{ model.name }}_acados_get_nlp_in(acados_ocp_capsule); ocp_nlp_out *nlp_out = {{ model.name }}_acados_get_nlp_out(acados_ocp_capsule); ocp_nlp_solver *nlp_solver = {{ model.name }}_acados_get_nlp_solver(acados_ocp_capsule); void *nlp_opts = {{ model.name }}_acados_get_nlp_opts(acados_ocp_capsule); // initial condition int idxbx0[{{ dims.nbx_0 }}]; {%- for i in range(end=dims.nbx_0) %} idxbx0[{{ i }}] = {{ constraints.idxbx_0[i] }}; {%- endfor %} double lbx0[{{ dims.nbx_0 }}]; double ubx0[{{ dims.nbx_0 }}]; {%- for i in range(end=dims.nbx_0) %} lbx0[{{ i }}] = {{ constraints.lbx_0[i] }}; ubx0[{{ i }}] = {{ constraints.ubx_0[i] }}; {%- endfor %} ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "idxbx", idxbx0); ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "lbx", lbx0); ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "ubx", ubx0); // initialization for state values double x_init[{{ dims.nx }}]; {%- for i in range(end=dims.nx) %} x_init[{{ i }}] = 0.0; {%- endfor %} // initial value for control input double u0[{{ dims.nu }}]; {%- for i in range(end=dims.nu) %} u0[{{ i }}] = 0.0; {%- endfor %} {%- if dims.np > 0 %} // set parameters double p[{{ dims.np }}]; {% for item in parameter_values %} p[{{ loop.index0 }}] = {{ item }}; {% endfor %} for (int ii = 0; ii <= {{ dims.N }}; ii++) { {{ model.name }}_acados_update_params(acados_ocp_capsule, ii, p, {{ dims.np }}); } {% endif %}{# if np > 0 #} // prepare evaluation int NTIMINGS = 1; double min_time = 1e12; double kkt_norm_inf; double elapsed_time; int sqp_iter; double xtraj[{{ dims.nx }} * ({{ dims.N }}+1)]; double utraj[{{ dims.nu }} * ({{ dims.N }})]; // solve ocp in loop int rti_phase = 0; for (int ii = 0; ii < NTIMINGS; ii++) { // initialize solution for (int i = 0; i <= nlp_dims->N; i++) { ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "x", x_init); ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "u", u0); } ocp_nlp_solver_opts_set(nlp_config, nlp_opts, "rti_phase", &rti_phase); status = {{ model.name }}_acados_solve(acados_ocp_capsule); ocp_nlp_get(nlp_config, nlp_solver, "time_tot", &elapsed_time); min_time = MIN(elapsed_time, min_time); } /* print solution and statistics */ for (int ii = 0; ii <= nlp_dims->N; ii++) ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "x", &xtraj[ii*{{ dims.nx }}]); for (int ii = 0; ii < nlp_dims->N; ii++) ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "u", &utraj[ii*{{ dims.nu }}]); printf("\n--- xtraj ---\n"); d_print_exp_tran_mat( {{ dims.nx }}, {{ dims.N }}+1, xtraj, {{ dims.nx }} ); printf("\n--- utraj ---\n"); d_print_exp_tran_mat( {{ dims.nu }}, {{ dims.N }}, utraj, {{ dims.nu }} ); // ocp_nlp_out_print(nlp_solver->dims, nlp_out); printf("\nsolved ocp %d times, solution printed above\n\n", NTIMINGS); if (status == ACADOS_SUCCESS) { printf("{{ model.name }}_acados_solve(): SUCCESS!\n"); } else { printf("{{ model.name }}_acados_solve() failed with status %d.\n", status); } // get solution ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, 0, "kkt_norm_inf", &kkt_norm_inf); ocp_nlp_get(nlp_config, nlp_solver, "sqp_iter", &sqp_iter); {{ model.name }}_acados_print_stats(acados_ocp_capsule); printf("\nSolver info:\n"); printf(" SQP iterations %2d\n minimum time for %d solve %f [ms]\n KKT %e\n", sqp_iter, NTIMINGS, min_time*1000, kkt_norm_inf); // free solver status = {{ model.name }}_acados_free(acados_ocp_capsule); if (status) { printf("{{ model.name }}_acados_free() returned status %d. \n", status); } // free solver capsule status = {{ model.name }}_acados_free_capsule(acados_ocp_capsule); if (status) { printf("{{ model.name }}_acados_free_capsule() returned status %d. \n", status); } return status; }