import json import os import numpy as np import tomllib from abc import abstractmethod, ABC from enum import StrEnum from typing import Any, NamedTuple from collections.abc import Callable from functools import cache from cereal import car from openpilot.common.basedir import BASEDIR from openpilot.common.simple_kalman import KF1D, get_kalman_gain from openpilot.selfdrive.car import DT_CTRL, apply_hysteresis, gen_empty_fingerprint, scale_rot_inertia, scale_tire_stiffness, get_friction, STD_CARGO_KG from openpilot.selfdrive.car.can_definitions import CanData, CanRecvCallable, CanSendCallable from openpilot.selfdrive.car.conversions import Conversions as CV from openpilot.selfdrive.car.helpers import clip from openpilot.selfdrive.car.values import PLATFORMS GearShifter = car.CarState.GearShifter V_CRUISE_MAX = 145 MAX_CTRL_SPEED = (V_CRUISE_MAX + 4) * CV.KPH_TO_MS ACCEL_MAX = 2.0 ACCEL_MIN = -3.5 FRICTION_THRESHOLD = 0.3 TORQUE_PARAMS_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/params.toml') TORQUE_OVERRIDE_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/override.toml') TORQUE_SUBSTITUTE_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/substitute.toml') GEAR_SHIFTER_MAP: dict[str, car.CarState.GearShifter] = { 'P': GearShifter.park, 'PARK': GearShifter.park, 'R': GearShifter.reverse, 'REVERSE': GearShifter.reverse, 'N': GearShifter.neutral, 'NEUTRAL': GearShifter.neutral, 'E': GearShifter.eco, 'ECO': GearShifter.eco, 'T': GearShifter.manumatic, 'MANUAL': GearShifter.manumatic, 'D': GearShifter.drive, 'DRIVE': GearShifter.drive, 'S': GearShifter.sport, 'SPORT': GearShifter.sport, 'L': GearShifter.low, 'LOW': GearShifter.low, 'B': GearShifter.brake, 'BRAKE': GearShifter.brake, } class LatControlInputs(NamedTuple): lateral_acceleration: float roll_compensation: float vego: float aego: float TorqueFromLateralAccelCallbackType = Callable[[LatControlInputs, car.CarParams.LateralTorqueTuning, float, float, bool, bool], float] @cache def get_torque_params(): with open(TORQUE_SUBSTITUTE_PATH, 'rb') as f: sub = tomllib.load(f) with open(TORQUE_PARAMS_PATH, 'rb') as f: params = tomllib.load(f) with open(TORQUE_OVERRIDE_PATH, 'rb') as f: override = tomllib.load(f) torque_params = {} for candidate in (sub.keys() | params.keys() | override.keys()) - {'legend'}: if sum([candidate in x for x in [sub, params, override]]) > 1: raise RuntimeError(f'{candidate} is defined twice in torque config') sub_candidate = sub.get(candidate, candidate) if sub_candidate in override: out = override[sub_candidate] elif sub_candidate in params: out = params[sub_candidate] else: raise NotImplementedError(f"Did not find torque params for {sub_candidate}") torque_params[sub_candidate] = {key: out[i] for i, key in enumerate(params['legend'])} if candidate in sub: torque_params[candidate] = torque_params[sub_candidate] return torque_params # generic car and radar interfaces class CarInterfaceBase(ABC): def __init__(self, CP: car.CarParams, CarController, CarState): self.CP = CP self.frame = 0 self.v_ego_cluster_seen = False self.CS: CarStateBase = CarState(CP) self.cp = self.CS.get_can_parser(CP) self.cp_cam = self.CS.get_cam_can_parser(CP) self.cp_adas = self.CS.get_adas_can_parser(CP) self.cp_body = self.CS.get_body_can_parser(CP) self.cp_loopback = self.CS.get_loopback_can_parser(CP) self.can_parsers = (self.cp, self.cp_cam, self.cp_adas, self.cp_body, self.cp_loopback) dbc_name = "" if self.cp is None else self.cp.dbc_name self.CC: CarControllerBase = CarController(dbc_name, CP) def apply(self, c: car.CarControl, now_nanos: int) -> tuple[car.CarControl.Actuators, list[CanData]]: return self.CC.update(c, self.CS, now_nanos) @staticmethod def get_pid_accel_limits(CP, current_speed, cruise_speed): return ACCEL_MIN, ACCEL_MAX @classmethod def get_non_essential_params(cls, candidate: str) -> car.CarParams: """ Parameters essential to controlling the car may be incomplete or wrong without FW versions or fingerprints. """ return cls.get_params(candidate, gen_empty_fingerprint(), list(), False, False) @classmethod def get_params(cls, candidate: str, fingerprint: dict[int, dict[int, int]], car_fw: list[car.CarParams.CarFw], experimental_long: bool, docs: bool): ret = CarInterfaceBase.get_std_params(candidate) platform = PLATFORMS[candidate] ret.mass = platform.config.specs.mass ret.wheelbase = platform.config.specs.wheelbase ret.steerRatio = platform.config.specs.steerRatio ret.centerToFront = ret.wheelbase * platform.config.specs.centerToFrontRatio ret.minEnableSpeed = platform.config.specs.minEnableSpeed ret.minSteerSpeed = platform.config.specs.minSteerSpeed ret.tireStiffnessFactor = platform.config.specs.tireStiffnessFactor ret.flags |= int(platform.config.flags) ret = cls._get_params(ret, candidate, fingerprint, car_fw, experimental_long, docs) # Vehicle mass is published curb weight plus assumed payload such as a human driver; notCars have no assumed payload if not ret.notCar: ret.mass = ret.mass + STD_CARGO_KG # Set params dependent on values set by the car interface ret.rotationalInertia = scale_rot_inertia(ret.mass, ret.wheelbase) ret.tireStiffnessFront, ret.tireStiffnessRear = scale_tire_stiffness(ret.mass, ret.wheelbase, ret.centerToFront, ret.tireStiffnessFactor) return ret @staticmethod @abstractmethod def _get_params(ret: car.CarParams, candidate, fingerprint: dict[int, dict[int, int]], car_fw: list[car.CarParams.CarFw], experimental_long: bool, docs: bool) -> car.CarParams: raise NotImplementedError @staticmethod def init(CP: car.CarParams, can_recv: CanRecvCallable, can_send: CanSendCallable): pass @staticmethod def get_steer_feedforward_default(desired_angle, v_ego): # Proportional to realigning tire momentum: lateral acceleration. return desired_angle * (v_ego**2) def get_steer_feedforward_function(self): return self.get_steer_feedforward_default def torque_from_lateral_accel_linear(self, latcontrol_inputs: LatControlInputs, torque_params: car.CarParams.LateralTorqueTuning, lateral_accel_error: float, lateral_accel_deadzone: float, friction_compensation: bool, gravity_adjusted: bool) -> float: # The default is a linear relationship between torque and lateral acceleration (accounting for road roll and steering friction) friction = get_friction(lateral_accel_error, lateral_accel_deadzone, FRICTION_THRESHOLD, torque_params, friction_compensation) return (latcontrol_inputs.lateral_acceleration / float(torque_params.latAccelFactor)) + friction def torque_from_lateral_accel(self) -> TorqueFromLateralAccelCallbackType: return self.torque_from_lateral_accel_linear # returns a set of default params to avoid repetition in car specific params @staticmethod def get_std_params(candidate): ret = car.CarParams.new_message() ret.carFingerprint = candidate # Car docs fields ret.maxLateralAccel = get_torque_params()[candidate]['MAX_LAT_ACCEL_MEASURED'] ret.autoResumeSng = True # describes whether car can resume from a stop automatically # standard ALC params ret.tireStiffnessFactor = 1.0 ret.steerControlType = car.CarParams.SteerControlType.torque ret.minSteerSpeed = 0. ret.wheelSpeedFactor = 1.0 ret.pcmCruise = True # openpilot's state is tied to the PCM's cruise state on most cars ret.minEnableSpeed = -1. # enable is done by stock ACC, so ignore this ret.steerRatioRear = 0. # no rear steering, at least on the listed cars aboveA ret.openpilotLongitudinalControl = False ret.stopAccel = -2.0 ret.stoppingDecelRate = 0.8 # brake_travel/s while trying to stop ret.vEgoStopping = 0.5 ret.vEgoStarting = 0.5 ret.stoppingControl = True ret.longitudinalTuning.kf = 1. ret.longitudinalTuning.kpBP = [0.] ret.longitudinalTuning.kpV = [0.] ret.longitudinalTuning.kiBP = [0.] ret.longitudinalTuning.kiV = [0.] # TODO estimate car specific lag, use .15s for now ret.longitudinalActuatorDelay = 0.15 ret.steerLimitTimer = 1.0 return ret @staticmethod def configure_torque_tune(candidate: str, tune: car.CarParams.LateralTuning, steering_angle_deadzone_deg: float = 0.0, use_steering_angle: bool = True): params = get_torque_params()[candidate] tune.init('torque') tune.torque.useSteeringAngle = use_steering_angle tune.torque.kp = 1.0 tune.torque.kf = 1.0 tune.torque.ki = 0.1 tune.torque.friction = params['FRICTION'] tune.torque.latAccelFactor = params['LAT_ACCEL_FACTOR'] tune.torque.latAccelOffset = 0.0 tune.torque.steeringAngleDeadzoneDeg = steering_angle_deadzone_deg def _update(self) -> car.CarState: return self.CS.update(*self.can_parsers) def update(self, can_packets: list[tuple[int, list[CanData]]]) -> car.CarState: # parse can for cp in self.can_parsers: if cp is not None: cp.update_strings(can_packets) # get CarState ret = self._update() ret.canValid = all(cp.can_valid for cp in self.can_parsers if cp is not None) ret.canTimeout = any(cp.bus_timeout for cp in self.can_parsers if cp is not None) if ret.vEgoCluster == 0.0 and not self.v_ego_cluster_seen: ret.vEgoCluster = ret.vEgo else: self.v_ego_cluster_seen = True # Many cars apply hysteresis to the ego dash speed ret.vEgoCluster = apply_hysteresis(ret.vEgoCluster, self.CS.out.vEgoCluster, self.CS.cluster_speed_hyst_gap) if abs(ret.vEgo) < self.CS.cluster_min_speed: ret.vEgoCluster = 0.0 if ret.cruiseState.speedCluster == 0: ret.cruiseState.speedCluster = ret.cruiseState.speed # copy back for next iteration self.CS.out = ret.as_reader() return ret class RadarInterfaceBase(ABC): def __init__(self, CP: car.CarParams): self.CP = CP self.rcp = None self.pts: dict[int, car.RadarData.RadarPoint] = {} self.delay = 0 self.radar_ts = CP.radarTimeStep self.frame = 0 def update(self, can_strings): self.frame += 1 if (self.frame % int(100 * self.radar_ts)) == 0: return car.RadarData.new_message() return None class CarStateBase(ABC): def __init__(self, CP: car.CarParams): self.CP = CP self.car_fingerprint = CP.carFingerprint self.out = car.CarState.new_message() self.cruise_buttons = 0 self.left_blinker_cnt = 0 self.right_blinker_cnt = 0 self.steering_pressed_cnt = 0 self.left_blinker_prev = False self.right_blinker_prev = False self.cluster_speed_hyst_gap = 0.0 self.cluster_min_speed = 0.0 # min speed before dropping to 0 Q = [[0.0, 0.0], [0.0, 100.0]] R = 0.3 A = [[1.0, DT_CTRL], [0.0, 1.0]] C = [[1.0, 0.0]] x0=[[0.0], [0.0]] K = get_kalman_gain(DT_CTRL, np.array(A), np.array(C), np.array(Q), R) self.v_ego_kf = KF1D(x0=x0, A=A, C=C[0], K=K) @abstractmethod def update(self, cp, cp_cam, cp_adas, cp_body, cp_loopback) -> car.CarState: pass def update_speed_kf(self, v_ego_raw): if abs(v_ego_raw - self.v_ego_kf.x[0][0]) > 2.0: # Prevent large accelerations when car starts at non zero speed self.v_ego_kf.set_x([[v_ego_raw], [0.0]]) v_ego_x = self.v_ego_kf.update(v_ego_raw) return float(v_ego_x[0]), float(v_ego_x[1]) def get_wheel_speeds(self, fl, fr, rl, rr, unit=CV.KPH_TO_MS): factor = unit * self.CP.wheelSpeedFactor wheelSpeeds = car.CarState.WheelSpeeds.new_message() wheelSpeeds.fl = fl * factor wheelSpeeds.fr = fr * factor wheelSpeeds.rl = rl * factor wheelSpeeds.rr = rr * factor return wheelSpeeds def update_blinker_from_lamp(self, blinker_time: int, left_blinker_lamp: bool, right_blinker_lamp: bool): """Update blinkers from lights. Enable output when light was seen within the last `blinker_time` iterations""" # TODO: Handle case when switching direction. Now both blinkers can be on at the same time self.left_blinker_cnt = blinker_time if left_blinker_lamp else max(self.left_blinker_cnt - 1, 0) self.right_blinker_cnt = blinker_time if right_blinker_lamp else max(self.right_blinker_cnt - 1, 0) return self.left_blinker_cnt > 0, self.right_blinker_cnt > 0 def update_steering_pressed(self, steering_pressed, steering_pressed_min_count): """Applies filtering on steering pressed for noisy driver torque signals.""" self.steering_pressed_cnt += 1 if steering_pressed else -1 self.steering_pressed_cnt = clip(self.steering_pressed_cnt, 0, steering_pressed_min_count * 2) return self.steering_pressed_cnt > steering_pressed_min_count def update_blinker_from_stalk(self, blinker_time: int, left_blinker_stalk: bool, right_blinker_stalk: bool): """Update blinkers from stalk position. When stalk is seen the blinker will be on for at least blinker_time, or until the stalk is turned off, whichever is longer. If the opposite stalk direction is seen the blinker is forced to the other side. On a rising edge of the stalk the timeout is reset.""" if left_blinker_stalk: self.right_blinker_cnt = 0 if not self.left_blinker_prev: self.left_blinker_cnt = blinker_time if right_blinker_stalk: self.left_blinker_cnt = 0 if not self.right_blinker_prev: self.right_blinker_cnt = blinker_time self.left_blinker_cnt = max(self.left_blinker_cnt - 1, 0) self.right_blinker_cnt = max(self.right_blinker_cnt - 1, 0) self.left_blinker_prev = left_blinker_stalk self.right_blinker_prev = right_blinker_stalk return bool(left_blinker_stalk or self.left_blinker_cnt > 0), bool(right_blinker_stalk or self.right_blinker_cnt > 0) @staticmethod def parse_gear_shifter(gear: str | None) -> car.CarState.GearShifter: if gear is None: return GearShifter.unknown return GEAR_SHIFTER_MAP.get(gear.upper(), GearShifter.unknown) @staticmethod def get_can_parser(CP): return None @staticmethod def get_cam_can_parser(CP): return None @staticmethod def get_adas_can_parser(CP): return None @staticmethod def get_body_can_parser(CP): return None @staticmethod def get_loopback_can_parser(CP): return None class CarControllerBase(ABC): def __init__(self, dbc_name: str, CP: car.CarParams): self.CP = CP self.frame = 0 @abstractmethod def update(self, CC: car.CarControl, CS: CarStateBase, now_nanos: int) -> tuple[car.CarControl.Actuators, list[CanData]]: pass INTERFACE_ATTR_FILE = { "FINGERPRINTS": "fingerprints", "FW_VERSIONS": "fingerprints", } # interface-specific helpers def get_interface_attr(attr: str, combine_brands: bool = False, ignore_none: bool = False) -> dict[str | StrEnum, Any]: # read all the folders in selfdrive/car and return a dict where: # - keys are all the car models or brand names # - values are attr values from all car folders result = {} for car_folder in sorted([x[0] for x in os.walk(BASEDIR + '/selfdrive/car')]): try: brand_name = car_folder.split('/')[-1] brand_values = __import__(f'openpilot.selfdrive.car.{brand_name}.{INTERFACE_ATTR_FILE.get(attr, "values")}', fromlist=[attr]) if hasattr(brand_values, attr) or not ignore_none: attr_data = getattr(brand_values, attr, None) else: continue if combine_brands: if isinstance(attr_data, dict): for f, v in attr_data.items(): result[f] = v else: result[brand_name] = attr_data except (ImportError, OSError): pass return result class NanoFFModel: def __init__(self, weights_loc: str, platform: str): self.weights_loc = weights_loc self.platform = platform self.load_weights(platform) def load_weights(self, platform: str): with open(self.weights_loc) as fob: self.weights = {k: np.array(v) for k, v in json.load(fob)[platform].items()} def relu(self, x: np.ndarray): return np.maximum(0.0, x) def forward(self, x: np.ndarray): assert x.ndim == 1 x = (x - self.weights['input_norm_mat'][:, 0]) / (self.weights['input_norm_mat'][:, 1] - self.weights['input_norm_mat'][:, 0]) x = self.relu(np.dot(x, self.weights['w_1']) + self.weights['b_1']) x = self.relu(np.dot(x, self.weights['w_2']) + self.weights['b_2']) x = self.relu(np.dot(x, self.weights['w_3']) + self.weights['b_3']) x = np.dot(x, self.weights['w_4']) + self.weights['b_4'] return x def predict(self, x: list[float], do_sample: bool = False): x = self.forward(np.array(x)) if do_sample: pred = np.random.laplace(x[0], np.exp(x[1]) / self.weights['temperature']) else: pred = x[0] pred = pred * (self.weights['output_norm_mat'][1] - self.weights['output_norm_mat'][0]) + self.weights['output_norm_mat'][0] return pred