#if SENSOR_ID == 3 #define BGGR #define BIT_DEPTH 10 #define PV_MAX10 1023 #define PV_MAX16 65536 // gamma curve is calibrated to 16bit #define BLACK_LVL 64 #define VIGNETTE_RSZ 2.2545f float combine_dual_pvs(float lv, float sv, int expo_time) { float svc = fmax(sv * expo_time, (float)(64 * (PV_MAX10 - BLACK_LVL))); float svd = sv * fmin(expo_time, 8.0) / 8; if (expo_time > 64) { if (lv < PV_MAX10 - BLACK_LVL) { return lv / (PV_MAX16 - BLACK_LVL); } else { return (svc / 64) / (PV_MAX16 - BLACK_LVL); } } else { if (lv > 32) { return (lv * 64 / fmax(expo_time, 8.0)) / (PV_MAX16 - BLACK_LVL); } else { return svd / (PV_MAX16 - BLACK_LVL); } } } float4 normalize_pv_hdr(int4 parsed, int4 short_parsed, float vignette_factor, int expo_time) { float4 pl = convert_float4(parsed - BLACK_LVL); float4 ps = convert_float4(short_parsed - BLACK_LVL); float4 pv; pv.s0 = combine_dual_pvs(pl.s0, ps.s0, expo_time); pv.s1 = combine_dual_pvs(pl.s1, ps.s1, expo_time); pv.s2 = combine_dual_pvs(pl.s2, ps.s2, expo_time); pv.s3 = combine_dual_pvs(pl.s3, ps.s3, expo_time); return clamp(pv*vignette_factor, 0.0, 1.0); } float3 color_correct(float3 rgb) { float3 corrected = rgb.x * (float3)(1.55361989, -0.268894615, -0.000593219); corrected += rgb.y * (float3)(-0.421217301, 1.51883144, -0.69760146); corrected += rgb.z * (float3)(-0.132402589, -0.249936825, 1.69819468); return corrected; } float3 apply_gamma(float3 rgb, int expo_time) { float s = log2((float)expo_time); if (s < 6) {s = fmin(12.0 - s, 9.0);} // log function adaptive to number of bits return clamp(log(1 + rgb*(PV_MAX16 - BLACK_LVL)) * (0.48*s*s - 12.92*s + 115.0) - (1.08*s*s - 29.2*s + 260.0), 0.0, 255.0) / 255.0; } #endif