import pyray as rl import numpy as np from typing import Any FRAGMENT_SHADER = """ #version 300 es precision mediump float; in vec2 fragTexCoord; out vec4 finalColor; uniform vec2 points[100]; uniform int pointCount; uniform vec4 fillColor; uniform vec2 resolution; uniform bool useGradient; uniform vec2 gradientStart; uniform vec2 gradientEnd; uniform vec4 gradientColors[8]; uniform float gradientStops[8]; uniform int gradientColorCount; vec4 getGradientColor(vec2 pos) { vec2 gradientDir = gradientEnd - gradientStart; float gradientLength = length(gradientDir); if (gradientLength < 0.001) return gradientColors[0]; vec2 normalizedDir = gradientDir / gradientLength; vec2 pointVec = pos - gradientStart; float projection = dot(pointVec, normalizedDir); float t = clamp(projection / gradientLength, 0.0, 1.0); for (int i = 0; i < gradientColorCount - 1; i++) { if (t >= gradientStops[i] && t <= gradientStops[i+1]) { float segmentT = (t - gradientStops[i]) / (gradientStops[i+1] - gradientStops[i]); return mix(gradientColors[i], gradientColors[i+1], segmentT); } } return gradientColors[gradientColorCount-1]; } bool isPointInsidePolygon(vec2 p) { if (pointCount < 3) return false; if (pointCount == 3) { vec2 v0 = points[0]; vec2 v1 = points[1]; vec2 v2 = points[2]; float d = (v1.y - v2.y) * (v0.x - v2.x) + (v2.x - v1.x) * (v0.y - v2.y); if (abs(d) < 0.0001) return false; float a = ((v1.y - v2.y) * (p.x - v2.x) + (v2.x - v1.x) * (p.y - v2.y)) / d; float b = ((v2.y - v0.y) * (p.x - v2.x) + (v0.x - v2.x) * (p.y - v2.y)) / d; float c = 1.0 - a - b; return (a >= 0.0 && b >= 0.0 && c >= 0.0); } bool inside = false; for (int i = 0, j = pointCount - 1; i < pointCount; j = i++) { if (distance(points[i], points[j]) < 0.0001) continue; float dy = points[j].y - points[i].y; if (abs(dy) < 0.0001) continue; if (((points[i].y > p.y) != (points[j].y > p.y))) { float x_intersect = points[i].x + (points[j].x - points[i].x) * (p.y - points[i].y) / dy; if (p.x < x_intersect) { inside = !inside; } } } return inside; } float distanceToEdge(vec2 p) { float minDist = 1000.0; for (int i = 0, j = pointCount - 1; i < pointCount; j = i++) { vec2 edge0 = points[j]; vec2 edge1 = points[i]; if (distance(edge0, edge1) < 0.0001) continue; vec2 v1 = p - edge0; vec2 v2 = edge1 - edge0; float l2 = dot(v2, v2); if (l2 < 0.0001) { float dist = length(v1); minDist = min(minDist, dist); continue; } float t = clamp(dot(v1, v2) / l2, 0.0, 1.0); vec2 projection = edge0 + t * v2; float dist = length(p - projection); minDist = min(minDist, dist); } return minDist; } float signedDistanceToPolygon(vec2 p) { float dist = distanceToEdge(p); bool inside = isPointInsidePolygon(p); return inside ? dist : -dist; } void main() { vec2 pixel = fragTexCoord * resolution; float signedDist = signedDistanceToPolygon(pixel); vec2 pixelGrad = vec2(dFdx(pixel.x), dFdy(pixel.y)); float pixelSize = length(pixelGrad); float aaWidth = max(0.5, pixelSize * 1.0); float alpha = smoothstep(-aaWidth, aaWidth, signedDist); if (alpha > 0.0) { vec4 color; if (useGradient) { color = getGradientColor(fragTexCoord); } else { color = fillColor; } finalColor = vec4(color.rgb, color.a * alpha); } else { finalColor = vec4(0.0, 0.0, 0.0, 0.0); } } """ # Default vertex shader VERTEX_SHADER = """ #version 300 es in vec3 vertexPosition; in vec2 vertexTexCoord; out vec2 fragTexCoord; uniform mat4 mvp; void main() { fragTexCoord = vertexTexCoord; gl_Position = mvp * vec4(vertexPosition, 1.0); } """ UNIFORM_INT = rl.ShaderUniformDataType.SHADER_UNIFORM_INT UNIFORM_FLOAT = rl.ShaderUniformDataType.SHADER_UNIFORM_FLOAT UNIFORM_VEC2 = rl.ShaderUniformDataType.SHADER_UNIFORM_VEC2 UNIFORM_VEC4 = rl.ShaderUniformDataType.SHADER_UNIFORM_VEC4 class ShaderState: _instance: Any = None @classmethod def get_instance(cls): if cls._instance is None: cls._instance = cls() return cls._instance def __init__(self): if ShaderState._instance is not None: raise Exception("This class is a singleton. Use get_instance() instead.") self.initialized = False self.shader = None self.white_texture = None # Shader uniform locations self.locations = { 'pointCount': None, 'fillColor': None, 'resolution': None, 'points': None, 'useGradient': None, 'gradientStart': None, 'gradientEnd': None, 'gradientColors': None, 'gradientStops': None, 'gradientColorCount': None, 'mvp': None, } # Pre-allocated FFI objects self.point_count_ptr = rl.ffi.new("int[]", [0]) self.resolution_ptr = rl.ffi.new("float[]", [0.0, 0.0]) self.fill_color_ptr = rl.ffi.new("float[]", [0.0, 0.0, 0.0, 0.0]) self.use_gradient_ptr = rl.ffi.new("int[]", [0]) self.gradient_start_ptr = rl.ffi.new("float[]", [0.0, 0.0]) self.gradient_end_ptr = rl.ffi.new("float[]", [0.0, 0.0]) self.color_count_ptr = rl.ffi.new("int[]", [0]) # Pre-allocate gradient arrays (max 8 colors) self.gradient_colors_ptr = rl.ffi.new("float[]", 32) # 8 colors * 4 components self.gradient_stops_ptr = rl.ffi.new("float[]", 8) def initialize(self): if self.initialized: return vertex_shader = rl.load_shader_from_memory(VERTEX_SHADER, FRAGMENT_SHADER) self.shader = vertex_shader # Create and cache white texture white_img = rl.gen_image_color(2, 2, rl.WHITE) self.white_texture = rl.load_texture_from_image(white_img) rl.set_texture_filter(self.white_texture, rl.TEXTURE_FILTER_BILINEAR) rl.unload_image(white_img) # Cache all uniform locations for uniform in self.locations.keys(): self.locations[uniform] = rl.get_shader_location(self.shader, uniform) # Setup default MVP matrix mvp_ptr = rl.ffi.new("float[16]", [1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0]) rl.set_shader_value_matrix(self.shader, self.locations['mvp'], rl.Matrix(*mvp_ptr)) self.initialized = True def cleanup(self): if not self.initialized: return if self.white_texture: rl.unload_texture(self.white_texture) self.white_texture = None if self.shader: rl.unload_shader(self.shader) self.shader = None self.initialized = False def _configure_shader_color(state, color, gradient): """Configure shader uniforms for solid color or gradient rendering""" state.use_gradient_ptr[0] = 1 if gradient else 0 rl.set_shader_value(state.shader, state.locations['useGradient'], state.use_gradient_ptr, UNIFORM_INT) if gradient: # Set gradient start/end state.gradient_start_ptr[0:2] = gradient['start'] state.gradient_end_ptr[0:2] = gradient['end'] rl.set_shader_value(state.shader, state.locations['gradientStart'], state.gradient_start_ptr, UNIFORM_VEC2) rl.set_shader_value(state.shader, state.locations['gradientEnd'], state.gradient_end_ptr, UNIFORM_VEC2) # Set gradient colors colors = gradient['colors'] color_count = min(len(colors), 8) # Max 8 colors for i, c in enumerate(colors[:color_count]): base_idx = i * 4 state.gradient_colors_ptr[base_idx:base_idx+4] = [c.r / 255.0, c.g / 255.0, c.b / 255.0, c.a / 255.0] rl.set_shader_value_v(state.shader, state.locations['gradientColors'], state.gradient_colors_ptr, UNIFORM_VEC4, color_count) # Set gradient stops stops = gradient.get('stops', [i / (color_count - 1) for i in range(color_count)]) state.gradient_stops_ptr[0:color_count] = stops[:color_count] rl.set_shader_value_v(state.shader, state.locations['gradientStops'], state.gradient_stops_ptr, UNIFORM_FLOAT, color_count) # Set color count state.color_count_ptr[0] = color_count rl.set_shader_value(state.shader, state.locations['gradientColorCount'], state.color_count_ptr, UNIFORM_INT) else: color = color or rl.WHITE # Default to white if no color provided state.fill_color_ptr[0:4] = [color.r / 255.0, color.g / 255.0, color.b / 255.0, color.a / 255.0] rl.set_shader_value(state.shader, state.locations['fillColor'], state.fill_color_ptr, UNIFORM_VEC4) def draw_polygon(points: np.ndarray, color=None, gradient=None): """ Draw a complex polygon using shader-based even-odd fill rule Args: points: numpy array of (x,y) points defining the polygon color: Solid fill color (rl.Color) gradient: Dict with gradient parameters: { 'start': (x1, y1), # Start point (normalized 0-1) 'end': (x2, y2), # End point (normalized 0-1) 'colors': [rl.Color], # List of colors at stops 'stops': [float] # List of positions (0-1) } """ if len(points) < 3: return state = ShaderState.get_instance() if not state.initialized: state.initialize() # Find bounding box min_xy = np.min(points, axis=0) max_xy = np.max(points, axis=0) width = max(1, max_xy[0] - min_xy[0]) height = max(1, max_xy[1] - min_xy[1]) # Transform points to shader space transformed_points = points - min_xy state.point_count_ptr[0] = len(transformed_points) rl.set_shader_value(state.shader, state.locations['pointCount'], state.point_count_ptr, UNIFORM_INT) state.resolution_ptr[0:2] = [width, height] rl.set_shader_value(state.shader, state.locations['resolution'], state.resolution_ptr, UNIFORM_VEC2) # Set points flat_points = np.ascontiguousarray(transformed_points.flatten().astype(np.float32)) points_ptr = rl.ffi.cast("float *", flat_points.ctypes.data) rl.set_shader_value_v(state.shader, state.locations['points'], points_ptr, UNIFORM_VEC2, len(transformed_points)) # Configure color/gradient uniforms _configure_shader_color(state, color, gradient) # Draw with shader rl.begin_shader_mode(state.shader) rl.draw_texture_pro( state.white_texture, rl.Rectangle(0, 0, 2, 2), rl.Rectangle(int(min_xy[0]), int(min_xy[1]), int(width), int(height)), rl.Vector2(0, 0), 0.0, rl.WHITE, ) rl.end_shader_mode() def cleanup_shader_resources(): state = ShaderState.get_instance() state.cleanup()