from typing import Any from dataclasses import dataclass, field from tinygrad.dtype import dtypes, PtrDType, AddrSpace from tinygrad.uop.ops import PatternMatcher, UPat, Ops, UOp, resolve, GroupOp, RewriteNotReady, _substitute from tinygrad.helpers import argsort, prod, all_same, pluralize, getenv, colored, RANGEIFY from tinygrad.schedule.multi import multi_pm from tinygrad.schedule.kernelize import Kernel from tinygrad.uop.ops import track_rewrites, graph_rewrite_map, graph_rewrite, KernelInfo, identity_element, sint, AxisType # 0. do some cleanup rewrites, mostly copied from the old stuff double_reshape = PatternMatcher([ # RESHAPE on RESHAPE is the second reshape (UPat(Ops.RESHAPE, src=(UPat(Ops.RESHAPE),), name="x"), lambda x: x.replace(src=(x.src[0].src[0],))), ]) earliest_rewrites = double_reshape+PatternMatcher([ # UOp with size 0 is zero (UPat(GroupOp.All-{Ops.SINK}, name="root"), lambda root: root.const_like(0) if root.base.st is not None and root.size == 0 else None), # DETACH and CONTIGUOUS_BACKWARD are NOOPs here, so is FUSE (UPat((Ops.DETACH, Ops.CONTIGUOUS_BACKWARD, Ops.FUSE), name="x"), lambda x: x.src[0]), # reduce of size 0 is the identity element (UPat(Ops.REDUCE_AXIS, name="reduce", src=(UPat.var("x"),)), lambda reduce,x: reduce.const_like(identity_element(reduce.arg[0], reduce.dtype)) if x.size == 0 and reduce.size != 0 else None), # non shape changing RESHAPE is NOOP (UPat(Ops.RESHAPE, name="x"), lambda x: x.src[0] if x.src[0].shape == x.arg else None), # RESHAPE after COPY (UPat(Ops.COPY, src=(UPat(Ops.RESHAPE, name="r"),UPat(name="d")), name="c"), lambda c,r,d: c.replace(src=(r.src[0],d)).reshape(r.arg)), # TODO: this should be BUFFER_VIEW (UPat(Ops.COPY, src=(UPat(Ops.SHRINK, name="r"),UPat(name="d")), name="c"), lambda c,r,d: c.replace(src=(r.src[0],d)).shrink(r.arg)), # const hacks (UPat(Ops.CONST, name="x"), lambda x: x.replace(src=(x.src[0].src[0],)).reshape((1,)*len(x.shape)).expand(x.shape) if \ len(x.src) and x.src[0].op is Ops.VIEW and not any(s == 0 for s in x.shape) else None), # assign only to buffer (UPat(Ops.ASSIGN, src=(UPat(GroupOp.All-{Ops.BUFFER}, name="target"), UPat(name="x"))), lambda x,target: x if target.base.op is not Ops.BUFFER else None), # contiguous/buffer/copy/assign is already contiguous (UPat(Ops.CONTIGUOUS, name="root", src=(UPat((Ops.CONTIGUOUS, Ops.BUFFER, Ops.COPY, Ops.ASSIGN)),)), lambda root: root.src[0]), ]) # 1. add contiguous where we have to ALWAYS_CONTIGUOUS: set[Ops] = {Ops.CONTIGUOUS, Ops.ASSIGN, Ops.COPY, Ops.BUFFER, Ops.BUFFER_VIEW, Ops.CONST, Ops.BIND, Ops.DEVICE, Ops.MSELECT, Ops.MSTACK, Ops.DEFINE_GLOBAL, Ops.DEFINE_LOCAL, Ops.DEFINE_REG, Ops.LOAD} def realize(ctx:dict[UOp, None], tr:UOp) -> None: ctx[tr] = None def realize_parents(ctx:dict[UOp, None], rb:UOp) -> None: for s in rb.src: if s.op not in ALWAYS_CONTIGUOUS: ctx[s] = None def realize_assign(ctx:dict[UOp, None], a:UOp) -> None: if a.src[1].op not in ALWAYS_CONTIGUOUS: ctx[a.src[1]] = None do_realize = PatternMatcher([ # always realize SINK parents (UPat(Ops.SINK, name="s"), lambda ctx,s: ctx.update((x.base, None) for x in s.src if x.base.op not in ALWAYS_CONTIGUOUS)), # always realize ASSIGN/COPY/BUFFER_VIEW (UPat({Ops.ASSIGN, Ops.COPY, Ops.BUFFER_VIEW}, name="tr"), realize), # realize parents of COPY, MSELECT, MSTACK (UPat((Ops.COPY, Ops.MSELECT, Ops.MSTACK), name="rb"), realize_parents), # realize input to assign (might be optimized out) (UPat(Ops.ASSIGN, name="a"), realize_assign), ]) add_contiguous = PatternMatcher([ (UPat(GroupOp.All-{Ops.CONTIGUOUS}, name="x"), lambda ctx,x: x.replace(tag=1).contiguous() if x in ctx and x.tag is None else None), ]) remove_tags = PatternMatcher([(UPat(GroupOp.All, name="x"), lambda x: x.replace(tag=None) if x.tag is not None else None)]) # 2. mark all children @dataclass class ChildrenContext: children: dict[UOp, list[UOp]]|None = None def extract_children(ctx:ChildrenContext, x:UOp): if ctx.children is not None: return children_map = x.get_children_map() ctx.children = {} for k,v in children_map.items(): non_sink_children = [u for u in v if u.op is not Ops.SINK] if len(non_sink_children) <= 1: continue # NOTE: this gate shouldn't be here if any(x.op is Ops.REDUCE_AXIS for x in k.toposort()) and any(x.op in {Ops.BUFFER, Ops.CONTIGUOUS} for x in k.toposort()): ctx.children[k] = non_sink_children def mark_children(ctx:ChildrenContext, x:UOp): assert ctx.children is not None new_srcs = [(UOp(Ops.CHILD, s.dtype, src=(UOp(Ops.CHILDREN, s.dtype, (s,), arg=len(ctx.children[s])),), arg=(ctx.children[s].index(x), len(ctx.children[s]))) if s in ctx.children else s) for s in x.src] return x.replace(src=tuple(new_srcs)) pm_children = PatternMatcher([ (UPat(Ops.SINK, name="x"), extract_children), (UPat(GroupOp.All-{Ops.CHILD, Ops.CHILDREN}, name="x"), mark_children), ]) # 3. rangeify @dataclass class RangeifyContext: # block on parent until all children have been seen seen_children: dict[UOp, dict[int, UOp]] = field(default_factory=dict) seen_child: dict[UOp, Any] = field(default_factory=dict) progress: int = 0 # create ranges range_idx: int = 0 def new_range(self, s:sint, axistype:AxisType=AxisType.LOOP): ret = UOp.range(dtypes.int, s, self.range_idx, axistype) self.range_idx += 1 return ret def map_reshape(idx:UOp, r:UOp): acc = 1 to_sum = [] for s,src in list(zip(idx.shape, idx.src[1:]))[::-1]: to_sum.append(acc*src) acc *= s mish = sum(to_sum, start=UOp.const(dtypes.int, 0)) ret:list[UOp] = [] for s in r.src[0].shape[::-1]: ret.append(mish % s) # NOTE: simplify will turn this to CONST mish //= s tret = ret[0].sink(*ret[1:]).simplify().src[::-1] if len(ret) else () return r.src[0].index(*tret, dtype=idx.dtype, arg=idx.arg) def map_pad(idx:UOp, r:UOp): ret = list(idx.src[1:]) bigwhere = UOp.const(dtypes.bool, True) for i,(sh,(s,e)) in enumerate(zip(r.shape, r.arg)): if s == 0 and e == 0: continue where = UOp.const(dtypes.bool, True) if resolve(e > 0): where = where & (ret[i] < (sh-e)) if resolve(s > 0): where = where & (ret[i] >= s) bigwhere = bigwhere & where # this is safe but dumb # TODO (S-Lykles): switch to mixed index/valid ret[i] = (ret[i] - s).maximum(0).minimum(r.src[0].shape[i]-1) # PAD is with 0 return bigwhere.simplify().where(r.src[0].index(*ret, dtype=idx.dtype, arg=idx.arg), UOp.const(r.dtype, 0)) def map_expand(r:UOp, idx:UOp): new_rngs = [] ending_ranges = [] non_ending_ranges = [] for a,x,y in zip(idx.src[1:], r.src[0].shape, r.shape): axis_to_range = [u for u in a.toposort() if u.op is Ops.RANGE] if resolve(x!=y, False): ending_ranges.extend(axis_to_range) new_rngs.append(a.const_like(0)) else: non_ending_ranges.extend(axis_to_range) new_rngs.append(a) ending_ranges = [x.arg for x in ending_ranges if x not in non_ending_ranges] if idx.arg is not None: ending_ranges.append(idx.arg) return r.src[0].index(*new_rngs, arg=min(ending_ranges) if ending_ranges else None) pm_mops = PatternMatcher([ # this is like the definitions of these (UPat(Ops.SHRINK, name="r").f(Ops.INDEX, allow_any_len=True, name="idx"), lambda r,idx: r.src[0].index(*[a+ss if resolve(ss != 0) else a for a,(ss,_) in zip(idx.src[1:], r.arg)], dtype=idx.dtype, arg=idx.arg)), (UPat(Ops.PERMUTE, name="r").f(Ops.INDEX, allow_any_len=True, name="idx"), lambda r,idx: r.src[0].index(*[idx.src[1+p] for p in argsort(idx.src[0].arg)], dtype=idx.dtype, arg=idx.arg)), (UPat(Ops.FLIP, name="r").f(Ops.INDEX, allow_any_len=True, name="idx"), lambda r,idx: r.src[0].index(*[((s-1)-a) if f else a for a,s,f in zip(idx.src[1:], r.shape, r.arg)], dtype=idx.dtype, arg=idx.arg)), # expand needs to end ranges (UPat(Ops.EXPAND, name="r").f(Ops.INDEX, allow_any_len=True, name="idx"), map_expand), # reshape does a lot of symbolic stuff (UPat(Ops.RESHAPE, name="r").f(Ops.INDEX, allow_any_len=True, name="idx"), map_reshape), # pad adds min and max (UPat(Ops.PAD, name="r").f(Ops.INDEX, allow_any_len=True, name="idx"), map_pad), ]) def map_partial_contiguous(ctx:RangeifyContext, x:UOp, idx:UOp): if x.arg is None: return None # map_contiguous can handle this # NOTE: all partial contiguous can safely be replaced by full contiguous. we should be able to match old functionality like this if not (RANGEIFY > 1): return idx.replace(src=(x.replace(arg=None),)+idx.src[1:]) ranges = [] new_ranges = [] passthrough_idx = [] for i,s in enumerate(x.shape): if i not in x.arg: ranges.append(idx.src[1+i]) continue passthrough_idx.append(idx.src[1+i]) ranges.append(ctx.new_range(s) if resolve(s!=1) else UOp.const(dtypes.int, 0)) new_ranges.append(ranges[-1]) ret = x.src[0].index(*ranges).bufferize(*[x for x in new_ranges if x.op is not Ops.CONST], arg=x.device) return ret.index(*passthrough_idx) def map_contiguous(ctx:RangeifyContext, x:UOp): if x.arg is not None: return None ranges = [] for s in x.shape[len(x.src)-1:]: ranges.append(ctx.new_range(s) if resolve(s!=1) else UOp.const(dtypes.int, 0)) return x.src[0].index(*ranges).bufferize(*x.src[1:], *[x for x in ranges if x.op is not Ops.CONST], arg=x.device).forced_reshape(x.shape) def map_reduce(ctx:RangeifyContext, idx:UOp, red:UOp): rngs = list(idx.src[1:]) new_ranges = [] for i,s in enumerate(red.src[0].shape): if i in red.arg[1]: rngs[i] = ctx.new_range(s, axistype=AxisType.REDUCE) new_ranges.append(rngs[i]) return UOp(Ops.REDUCE, red.dtype, src=(red.src[0].index(*rngs),)+tuple(new_ranges), arg=red.arg[0]) def index_child(ctx:RangeifyContext, c:UOp, x:UOp, idx:UOp): if c not in ctx.seen_children: ctx.seen_children[c] = {} # wait here until we have seen all the children if len(ctx.seen_children[c]) != x.arg[1]: ctx.progress += 1 if ctx.progress > 10000: raise RuntimeError("children not making progress") # NOTE: we mark this here ctx.seen_children[c][x.arg[0]] = idx raise RewriteNotReady ctx.progress = 0 if c not in ctx.seen_child: all_rngs = zip(*[ch.src[1:] for ch in ctx.seen_children[c].values()]) out_rngs = [] end_ranges = [] idx_ranges = [] for i,r in enumerate(all_rngs): if all_same(r): out_rngs.append(r[0]) else: out_rngs.append(ctx.new_range(c.shape[i])) end_ranges.append(out_rngs[-1]) idx_ranges.append(i) ctx.seen_child[c] = (idx_ranges, end_ranges) else: out_rngs = list(idx.src[1:]) idx_ranges, end_ranges = ctx.seen_child[c] for i,nr in zip(idx_ranges, end_ranges): out_rngs[i] = nr # index based on the shared ranges ret = c.index(*out_rngs) # if all ranges aren't the same between children, we have to bufferize if len(idx_ranges) > 0: ret = ret.bufferize(*end_ranges, arg=x.device).index(*[idx.src[1+i] for i in idx_ranges]) return ret def children_gate(ctx:RangeifyContext, idx:UOp, c:UOp): if len(ctx.seen_children[c]) != c.arg: raise RuntimeError("all children should have been seen by now") return idx.replace(src=(idx.src[0].src[0],)+idx.src[1:]) def might_end_axis(idx:UOp): if idx.arg is None: return None # TODO: write a proper cost function here if all(x.op not in {Ops.BUFFER, Ops.CONTIGUOUS, Ops.BUFFERIZE} for x in idx.toposort()): return None if all(x.op not in {Ops.REDUCE_AXIS} for x in idx.toposort()): return None to_end_axis = [] for i,a in enumerate(idx.src[1:]): if any(x.arg > idx.arg for x in a.toposort() if x.op is Ops.RANGE): to_end_axis.append(i) if to_end_axis: return idx.replace(src=(idx.src[0].contiguous(arg=tuple(to_end_axis)),)+idx.src[1:], arg=None) return idx.replace(arg=None) pm_rangeify = pm_mops+PatternMatcher([ # sink contigs to kick it off (UPat(Ops.CONTIGUOUS, src=(UPat(),), name="x", allow_any_len=True), map_contiguous), # if there's an INDEX it can support partial contig (UPat(Ops.INDEX, src=(UPat(Ops.CONTIGUOUS, src=(UPat(),), name="x"),), allow_any_len=True, name="idx"), map_partial_contiguous), # if there are new ended children, tag the SINK (UPat(Ops.INDEX, src=(UPat(Ops.CHILD, src=(UPat(name="c"), ), name="x"),), allow_any_len=True, name="idx"), index_child), (UPat(Ops.INDEX, src=(UPat(Ops.CHILDREN, name="c"),), allow_any_len=True, name="idx"), children_gate), # if we come across this, remove it. it was a CHILD unused in an INDEX (UPat(Ops.CHILD, src=(UPat(Ops.CHILDREN, src=(UPat.var("x"),)),)), lambda x: x), # CONST (or DEFINE_VAR) can't have axes. remove srcs when we INDEX it (UPat(Ops.INDEX, src=(UPat((Ops.CONST, Ops.DEFINE_VAR), name="c"),)), lambda c: c.replace(src=())), # handle arg on any op with weight. old endrange stuff (UPat(Ops.INDEX, src=(UPat(GroupOp.Elementwise.union({Ops.REDUCE_AXIS})),), allow_any_len=True, name="idx"), might_end_axis), # move MAP through elementwise ALU / reduce. these are the items with cost (UPat(Ops.INDEX, src=(UPat(GroupOp.Elementwise.union({Ops.STORE, Ops.ASSIGN, Ops.COPY, Ops.DEVICE, Ops.BIND})),), allow_any_len=True, name="x"), lambda x: x.src[0].replace(src=tuple([s.index(*x.src[1:]) for s in x.src[0].src]))), (UPat(Ops.INDEX, src=(UPat(Ops.REDUCE_AXIS, name="red"),), allow_any_len=True, name="idx"), map_reduce), ]) # 3.5 cleanups # you don't know in the first pass if axes are going to die, this happens if there's an EXPAND to the left # TODO: figure out how to reenable this def cleanup_dead_axes(b:UOp): parents = b.src[0].toposort() new_rng = [] hit = False reshape: list[sint] = [] for s,rng in zip(b.shape, b.src[1:]): if rng not in parents and rng.op is Ops.RANGE: reshape.append(1) hit = True else: reshape.append(s) new_rng.append(rng) if hit: return b.replace(src=b.src[0:1]+tuple(new_rng)).reshape(tuple(reshape)).expand(b.shape) # if a buffer is being stored just for permutes or something, remove it # we want to reexpress the indexes of idx2 in terms of the implied b1 def remove_bufferize(b2:UOp, idx2:UOp): # HACK if len(b2.src) != len(idx2.src): return None assert len(b2.src) == len(idx2.src) assert all(x.op is Ops.RANGE for x in b2.src[1:]) return b2.src[0].substitute(dict(zip(b2.src[1:], idx2.src[1:]))) pm_cleanups = double_reshape+pm_mops+PatternMatcher([ #(UPat(Ops.BUFFERIZE, name="b"), cleanup_dead_axes), # remove noop buffers. if we look at the next index we can remove even more of these # NOTE: this is mostly the same case as below, but if there's no INDEX this gets more #(UPat(Ops.INDEX, name="idx").f(Ops.BUFFERIZE, allow_any_len=True, name="b2"), # lambda idx,b2: idx.src[0] if idx.src[1:] == b2.src[1:] else None), # remove reindexing (UPat(Ops.INDEX).f(Ops.BUFFERIZE, allow_any_len=True, name="b2").f(Ops.INDEX, allow_any_len=True, name="idx2"), remove_bufferize), # no buffers for const #(UPat(Ops.CONST, name='c').f(Ops.BUFFERIZE, allow_any_len=True, name="b"), lambda c,b: c.reshape((1,)*len(b.shape)).expand(b.shape)), ]) # 4. put in buffers for bufferize # TODO: should BUFFERIZE look a lot more like STORE # BUFFERIZE has device in arg # BUFFERIZE doesn't have indexing, that's implied by the ranges it closes # BUFFERIZE returns the BUFFER ready for INDEXing (doing this will make splitting a lot easier) # NOTE: this has been fixed up a bit def bufferize_to_store(x:UOp): rngs = x.src[1:] shape = tuple([int(r.vmax+1) for r in rngs]) sdtype = x.dtype.ptr(size=prod(shape), addrspace=AddrSpace.GLOBAL if not isinstance(x.arg, AddrSpace) else x.arg) assert prod(shape) > 0, f"no zero sized buffers {shape}" if x.src[0].op is Ops.ASSIGN: assign_target, assign_src = x.src[0].src assert assign_target.op is Ops.INDEX return assign_target.replace(dtype=sdtype).store(assign_src, *rngs, dtype=sdtype) if sdtype.addrspace == AddrSpace.GLOBAL: buf = UOp.new_buffer(x.arg, prod(shape), x.dtype) else: # TODO: how to dedup this buf = UOp(Ops.DEFINE_LOCAL, sdtype, arg=UOp.unique().arg) return buf.reshape(shape).index(*rngs, dtype=sdtype).store(x.src[0], *rngs, dtype=sdtype).forced_reshape(shape, dtype=x.dtype) pm_add_buffers = pm_mops+PatternMatcher([ (UPat(Ops.BUFFERIZE, name="x"), bufferize_to_store), # move RESHAPEs through MSELECT/MSTACK (UPat((Ops.MSELECT, Ops.MSTACK), src=UPat(Ops.RESHAPE), name="m"), lambda m: m.replace(src=tuple([x.src[0] for x in m.src])).reshape(m.src[0].arg)), ]) # 5. split into kernels @dataclass class LocalAddBufferContext: dg:int = 0 map:dict = field(default_factory=dict) vars:dict = field(default_factory=dict) def debuf(ctx:LocalAddBufferContext, buf:UOp): ret = UOp(Ops.DEFINE_GLOBAL, buf.dtype.ptr(buf.arg), arg=ctx.dg) if buf not in ctx.map: ctx.map[buf] = buf ctx.dg += 1 return ret def unbind_kernel(ctx:LocalAddBufferContext, b:UOp): ctx.vars[b] = None return b.src[0] def handle_assign(ctx:LocalAddBufferContext, assign:UOp): buf = assign.as_buf() # HACK to put the buffer in the MAP instead of MSTACK/MSELECT if buf.op in {Ops.MSTACK, Ops.MSELECT}: buf = buf.src[0] assert buf not in ctx.map ctx.map[buf] = assign return buf to_define_global = PatternMatcher([ (UPat(Ops.BUFFER, name="buf"), debuf), (UPat(Ops.BIND, name="b"), unbind_kernel), (UPat((Ops.ASSIGN, Ops.MSTACK, Ops.MSELECT), name="assign"), handle_assign), # HACK in case any CONSTs were replaced # this is only needed if you are using symbolic #(UPat(Ops.CONST, name="c"), lambda c: c.replace(src=()) if len(c.src) else None), ]) rangeify_codegen = PatternMatcher([ # add loads to non ptr indexes # TODO: this can be moved into codegen? (UPat((Ops.DEFINE_GLOBAL, Ops.STORE), name="dg").f(Ops.INDEX, name="idx", allow_any_len=True), lambda dg,idx: idx.replace(dtype=dg.dtype, arg=None).load() if not isinstance(idx.dtype, PtrDType) else None), # TODO: this can be moved into codegen (UPat(Ops.STORE, name="store").f(Ops.INDEX, allow_any_len=True, name="idx").f(Ops.LOAD), lambda store,idx: idx.replace(src=(store.as_buf(),)+idx.src[1:]).load(store if idx.dtype.addrspace != AddrSpace.LOCAL else store.barrier())), ]) def split_store(x:UOp): if len(x.ranges): return None ctx = LocalAddBufferContext() ret = graph_rewrite(x, to_define_global+rangeify_codegen, ctx=ctx, name="kernel split", bottom_up=True) # get name rng = sorted([u for u in ret.toposort() if u.op is Ops.RANGE], key=lambda x: x.arg) name = "k"+colored('_', 'BLACK').join(['']+[colored(s.src[0].render(), "WHITE" if s in ret.src[2:] else "red") for s in rng]) # NOTE: the hack for COPY is here ret = ret.sink(arg=KernelInfo(name=name)) if ret.src[1].op is not Ops.COPY else ret.src[1] kernel = UOp(Ops.KERNEL, src=tuple(ctx.map.values())+tuple(ctx.vars.keys()), arg=Kernel(ret,())) return x.as_buf().assign(kernel) split_kernels = PatternMatcher([ (UPat(Ops.STORE, name="x"), split_store), ]) @track_rewrites(name=lambda sink,ret: f"Schedule {pluralize('Kernel',len([u for u in ret[sink].toposort() if u.op is Ops.KERNEL]))}", replay=True) def get_rangeify_map(sink:UOp) -> dict[UOp, UOp]: tensor_map = graph_rewrite_map(sink, multi_pm+earliest_rewrites, name="earliest") realize_map: dict[UOp, UOp] = {} graph_rewrite(tensor_map[sink], do_realize, ctx=realize_map, name="Input Graph") tensor_map = graph_rewrite_map(tensor_map[sink], add_contiguous, ctx=realize_map, bottom_up=True, input_map=tensor_map, name="add contiguous") tensor_map = graph_rewrite_map(tensor_map[sink], remove_tags, input_map=tensor_map, name="cleanup") tensor_map = graph_rewrite_map(tensor_map[sink], pm_children, ctx=ChildrenContext(), bottom_up=True, input_map=tensor_map, name="children") tensor_map = graph_rewrite_map(tensor_map[sink], pm_rangeify, ctx=RangeifyContext(), bottom_up=True, input_map=tensor_map, name="rangeify") # NOTE: running symbolic can break the graph, leaving RANGE/INDEX/BUFFERIZE in the final graph #tensor_map = graph_rewrite_map(tensor_map[sink], symbolic_simple, input_map=tensor_map, name="symbolic") tensor_map = graph_rewrite_map(tensor_map[sink], pm_cleanups, bottom_up=True, input_map=tensor_map, name="cleanups") if getenv("VIZ"): graph_rewrite(tensor_map[sink], PatternMatcher([]), name="View Rangeify Graph") tensor_map = graph_rewrite_map(tensor_map[sink], pm_add_buffers, bottom_up=True, input_map=tensor_map, name="add buffers") tensor_map = graph_rewrite_map(tensor_map[sink], split_kernels, input_map=tensor_map, name="split kernels") # if a kernel depends on a buffer, and that buffer is later assigned to, make the assign depend on the kernel's assign kernel_assign: dict[UOp, UOp] = {} assign_rep: dict[UOp, UOp] = {} for u in tensor_map[sink].toposort(): if u.op is not Ops.ASSIGN: continue kernel_assign[u.buf_uop] = u for s in u.src[1].src: # TODO: this is probably broken for MSELECT/MSTACK if s.op is not Ops.BUFFER or s is u.buf_uop or (a:=kernel_assign.get(s)) is None: continue if any(x.op is Ops.ASSIGN and x.buf_uop is s for x in u.toposort()): raise RuntimeError(f"cycle detected in graph, kernel for {u.buf_uop} must either depend on ASSIGN or BUFFER") assign_rep[a] = kernel_assign[s] = a.replace(src=a.src+(u,)) if assign_rep: tensor_map = graph_rewrite_map(tensor_map[sink], _substitute, ctx=assign_rep, bottom_up=True, input_map=tensor_map, name="fix_assign") if getenv("VIZ"): graph_rewrite(tensor_map[sink], PatternMatcher([]), name="View Kernel Graph") return tensor_map