/* * Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren, * Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor, * Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan, * Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl * * This file is part of acados. * * The 2-Clause BSD License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE.; */ #ifndef {{ model.name }}_MODEL #define {{ model.name }}_MODEL #ifdef __cplusplus extern "C" { #endif {%- if solver_options.hessian_approx %} {%- set hessian_approx = solver_options.hessian_approx %} {%- elif solver_options.sens_hess %} {%- set hessian_approx = "EXACT" %} {%- else %} {%- set hessian_approx = "GAUSS_NEWTON" %} {%- endif %} {% if solver_options.integrator_type == "IRK" or solver_options.integrator_type == "LIFTED_IRK" %} // implicit ODE int {{ model.name }}_impl_dae_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem); int {{ model.name }}_impl_dae_fun_work(int *, int *, int *, int *); const int *{{ model.name }}_impl_dae_fun_sparsity_in(int); const int *{{ model.name }}_impl_dae_fun_sparsity_out(int); int {{ model.name }}_impl_dae_fun_n_in(void); int {{ model.name }}_impl_dae_fun_n_out(void); // implicit ODE int {{ model.name }}_impl_dae_fun_jac_x_xdot_z(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem); int {{ model.name }}_impl_dae_fun_jac_x_xdot_z_work(int *, int *, int *, int *); const int *{{ model.name }}_impl_dae_fun_jac_x_xdot_z_sparsity_in(int); const int *{{ model.name }}_impl_dae_fun_jac_x_xdot_z_sparsity_out(int); int {{ model.name }}_impl_dae_fun_jac_x_xdot_z_n_in(void); int {{ model.name }}_impl_dae_fun_jac_x_xdot_z_n_out(void); // implicit ODE int {{ model.name }}_impl_dae_jac_x_xdot_u_z(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem); int {{ model.name }}_impl_dae_jac_x_xdot_u_z_work(int *, int *, int *, int *); const int *{{ model.name }}_impl_dae_jac_x_xdot_u_z_sparsity_in(int); const int *{{ model.name }}_impl_dae_jac_x_xdot_u_z_sparsity_out(int); int {{ model.name }}_impl_dae_jac_x_xdot_u_z_n_in(void); int {{ model.name }}_impl_dae_jac_x_xdot_u_z_n_out(void); // implicit ODE - for lifted_irk int {{ model.name }}_impl_dae_fun_jac_x_xdot_u(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem); int {{ model.name }}_impl_dae_fun_jac_x_xdot_u_work(int *, int *, int *, int *); const int *{{ model.name }}_impl_dae_fun_jac_x_xdot_u_sparsity_in(int); const int *{{ model.name }}_impl_dae_fun_jac_x_xdot_u_sparsity_out(int); int {{ model.name }}_impl_dae_fun_jac_x_xdot_u_n_in(void); int {{ model.name }}_impl_dae_fun_jac_x_xdot_u_n_out(void); {%- if hessian_approx == "EXACT" %} int {{ model.name }}_impl_dae_hess(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem); int {{ model.name }}_impl_dae_hess_work(int *, int *, int *, int *); const int *{{ model.name }}_impl_dae_hess_sparsity_in(int); const int *{{ model.name }}_impl_dae_hess_sparsity_out(int); int {{ model.name }}_impl_dae_hess_n_in(void); int {{ model.name }}_impl_dae_hess_n_out(void); {%- endif %} {% elif solver_options.integrator_type == "GNSF" %} /* GNSF Functions */ {% if model.gnsf.purely_linear != 1 %} // phi_fun int {{ model.name }}_gnsf_phi_fun(const double** arg, double** res, int* iw, double* w, void *mem); int {{ model.name }}_gnsf_phi_fun_work(int *, int *, int *, int *); const int *{{ model.name }}_gnsf_phi_fun_sparsity_in(int); const int *{{ model.name }}_gnsf_phi_fun_sparsity_out(int); int {{ model.name }}_gnsf_phi_fun_n_in(void); int {{ model.name }}_gnsf_phi_fun_n_out(void); // phi_fun_jac_y int {{ model.name }}_gnsf_phi_fun_jac_y(const double** arg, double** res, int* iw, double* w, void *mem); int {{ model.name }}_gnsf_phi_fun_jac_y_work(int *, int *, int *, int *); const int *{{ model.name }}_gnsf_phi_fun_jac_y_sparsity_in(int); const int *{{ model.name }}_gnsf_phi_fun_jac_y_sparsity_out(int); int {{ model.name }}_gnsf_phi_fun_jac_y_n_in(void); int {{ model.name }}_gnsf_phi_fun_jac_y_n_out(void); // phi_jac_y_uhat int {{ model.name }}_gnsf_phi_jac_y_uhat(const double** arg, double** res, int* iw, double* w, void *mem); int {{ model.name }}_gnsf_phi_jac_y_uhat_work(int *, int *, int *, int *); const int *{{ model.name }}_gnsf_phi_jac_y_uhat_sparsity_in(int); const int *{{ model.name }}_gnsf_phi_jac_y_uhat_sparsity_out(int); int {{ model.name }}_gnsf_phi_jac_y_uhat_n_in(void); int {{ model.name }}_gnsf_phi_jac_y_uhat_n_out(void); {% if model.gnsf.nontrivial_f_LO == 1 %} // f_lo_fun_jac_x1k1uz int {{ model.name }}_gnsf_f_lo_fun_jac_x1k1uz(const double** arg, double** res, int* iw, double* w, void *mem); int {{ model.name }}_gnsf_f_lo_fun_jac_x1k1uz_work(int *, int *, int *, int *); const int *{{ model.name }}_gnsf_f_lo_fun_jac_x1k1uz_sparsity_in(int); const int *{{ model.name }}_gnsf_f_lo_fun_jac_x1k1uz_sparsity_out(int); int {{ model.name }}_gnsf_f_lo_fun_jac_x1k1uz_n_in(void); int {{ model.name }}_gnsf_f_lo_fun_jac_x1k1uz_n_out(void); {%- endif %} {%- endif %} // used to import model matrices int {{ model.name }}_gnsf_get_matrices_fun(const double** arg, double** res, int* iw, double* w, void *mem); int {{ model.name }}_gnsf_get_matrices_fun_work(int *, int *, int *, int *); const int *{{ model.name }}_gnsf_get_matrices_fun_sparsity_in(int); const int *{{ model.name }}_gnsf_get_matrices_fun_sparsity_out(int); int {{ model.name }}_gnsf_get_matrices_fun_n_in(void); int {{ model.name }}_gnsf_get_matrices_fun_n_out(void); {% elif solver_options.integrator_type == "ERK" %} /* explicit ODE */ // explicit ODE int {{ model.name }}_expl_ode_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem); int {{ model.name }}_expl_ode_fun_work(int *, int *, int *, int *); const int *{{ model.name }}_expl_ode_fun_sparsity_in(int); const int *{{ model.name }}_expl_ode_fun_sparsity_out(int); int {{ model.name }}_expl_ode_fun_n_in(void); int {{ model.name }}_expl_ode_fun_n_out(void); // explicit forward VDE int {{ model.name }}_expl_vde_forw(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem); int {{ model.name }}_expl_vde_forw_work(int *, int *, int *, int *); const int *{{ model.name }}_expl_vde_forw_sparsity_in(int); const int *{{ model.name }}_expl_vde_forw_sparsity_out(int); int {{ model.name }}_expl_vde_forw_n_in(void); int {{ model.name }}_expl_vde_forw_n_out(void); // explicit adjoint VDE int {{ model.name }}_expl_vde_adj(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem); int {{ model.name }}_expl_vde_adj_work(int *, int *, int *, int *); const int *{{ model.name }}_expl_vde_adj_sparsity_in(int); const int *{{ model.name }}_expl_vde_adj_sparsity_out(int); int {{ model.name }}_expl_vde_adj_n_in(void); int {{ model.name }}_expl_vde_adj_n_out(void); {%- if hessian_approx == "EXACT" %} int {{ model.name }}_expl_ode_hess(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem); int {{ model.name }}_expl_ode_hess_work(int *, int *, int *, int *); const int *{{ model.name }}_expl_ode_hess_sparsity_in(int); const int *{{ model.name }}_expl_ode_hess_sparsity_out(int); int {{ model.name }}_expl_ode_hess_n_in(void); int {{ model.name }}_expl_ode_hess_n_out(void); {%- endif %} {% elif solver_options.integrator_type == "DISCRETE" %} {% if model.dyn_ext_fun_type == "casadi" %} int {{ model.name }}_dyn_disc_phi_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem); int {{ model.name }}_dyn_disc_phi_fun_work(int *, int *, int *, int *); const int *{{ model.name }}_dyn_disc_phi_fun_sparsity_in(int); const int *{{ model.name }}_dyn_disc_phi_fun_sparsity_out(int); int {{ model.name }}_dyn_disc_phi_fun_n_in(void); int {{ model.name }}_dyn_disc_phi_fun_n_out(void); int {{ model.name }}_dyn_disc_phi_fun_jac(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem); int {{ model.name }}_dyn_disc_phi_fun_jac_work(int *, int *, int *, int *); const int *{{ model.name }}_dyn_disc_phi_fun_jac_sparsity_in(int); const int *{{ model.name }}_dyn_disc_phi_fun_jac_sparsity_out(int); int {{ model.name }}_dyn_disc_phi_fun_jac_n_in(void); int {{ model.name }}_dyn_disc_phi_fun_jac_n_out(void); {%- if hessian_approx == "EXACT" %} int {{ model.name }}_dyn_disc_phi_fun_jac_hess(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem); int {{ model.name }}_dyn_disc_phi_fun_jac_hess_work(int *, int *, int *, int *); const int *{{ model.name }}_dyn_disc_phi_fun_jac_hess_sparsity_in(int); const int *{{ model.name }}_dyn_disc_phi_fun_jac_hess_sparsity_out(int); int {{ model.name }}_dyn_disc_phi_fun_jac_hess_n_in(void); int {{ model.name }}_dyn_disc_phi_fun_jac_hess_n_out(void); {%- endif %} {% else %} {%- if hessian_approx == "EXACT" %} int {{ model.dyn_disc_fun_jac_hess }}(void **, void **, void *); {% endif %} int {{ model.dyn_disc_fun_jac }}(void **, void **, void *); int {{ model.dyn_disc_fun }}(void **, void **, void *); {% endif %} {% endif %} #ifdef __cplusplus } /* extern "C" */ #endif #endif // {{ model.name }}_MODEL