# # Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren, # Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor, # Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan, # Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl # # This file is part of acados. # # The 2-Clause BSD License # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE.; # import os from casadi import * from .utils import ALLOWED_CASADI_VERSIONS, is_empty, casadi_version_warning def generate_c_code_gnsf( model, opts ): casadi_version = CasadiMeta.version() casadi_opts = dict(mex=False, casadi_int='int', casadi_real='double') if casadi_version not in (ALLOWED_CASADI_VERSIONS): casadi_version_warning(casadi_version) model_name = model.name code_export_dir = opts["code_export_directory"] # set up directory if not os.path.exists(code_export_dir): os.makedirs(code_export_dir) cwd = os.getcwd() os.chdir(code_export_dir) model_dir = model_name + '_model' if not os.path.exists(model_dir): os.mkdir(model_dir) model_dir_location = os.path.join('.', model_dir) os.chdir(model_dir_location) # obtain gnsf dimensions get_matrices_fun = model.get_matrices_fun phi_fun = model.phi_fun size_gnsf_A = get_matrices_fun.size_out(0) gnsf_nx1 = size_gnsf_A[1] gnsf_nz1 = size_gnsf_A[0] - size_gnsf_A[1] gnsf_nuhat = max(phi_fun.size_in(1)) gnsf_ny = max(phi_fun.size_in(0)) gnsf_nout = max(phi_fun.size_out(0)) # set up expressions # if the model uses MX because of cost/constraints # the DAE can be exported as SX -> detect GNSF in Matlab # -> evaluated SX GNSF functions with MX. u = model.u if isinstance(u, casadi.MX): symbol = MX.sym else: symbol = SX.sym y = symbol("y", gnsf_ny, 1) uhat = symbol("uhat", gnsf_nuhat, 1) p = model.p x1 = symbol("gnsf_x1", gnsf_nx1, 1) x1dot = symbol("gnsf_x1dot", gnsf_nx1, 1) z1 = symbol("gnsf_z1", gnsf_nz1, 1) dummy = symbol("gnsf_dummy", 1, 1) empty_var = symbol("gnsf_empty_var", 0, 0) ## generate C code fun_name = model_name + '_gnsf_phi_fun' phi_fun_ = Function(fun_name, [y, uhat, p], [phi_fun(y, uhat, p)]) phi_fun_.generate(fun_name, casadi_opts) fun_name = model_name + '_gnsf_phi_fun_jac_y' phi_fun_jac_y = model.phi_fun_jac_y phi_fun_jac_y_ = Function(fun_name, [y, uhat, p], phi_fun_jac_y(y, uhat, p)) phi_fun_jac_y_.generate(fun_name, casadi_opts) fun_name = model_name + '_gnsf_phi_jac_y_uhat' phi_jac_y_uhat = model.phi_jac_y_uhat phi_jac_y_uhat_ = Function(fun_name, [y, uhat, p], phi_jac_y_uhat(y, uhat, p)) phi_jac_y_uhat_.generate(fun_name, casadi_opts) fun_name = model_name + '_gnsf_f_lo_fun_jac_x1k1uz' f_lo_fun_jac_x1k1uz = model.f_lo_fun_jac_x1k1uz f_lo_fun_jac_x1k1uz_eval = f_lo_fun_jac_x1k1uz(x1, x1dot, z1, u, p) # avoid codegeneration issue if not isinstance(f_lo_fun_jac_x1k1uz_eval, tuple) and is_empty(f_lo_fun_jac_x1k1uz_eval): f_lo_fun_jac_x1k1uz_eval = [empty_var] f_lo_fun_jac_x1k1uz_ = Function(fun_name, [x1, x1dot, z1, u, p], f_lo_fun_jac_x1k1uz_eval) f_lo_fun_jac_x1k1uz_.generate(fun_name, casadi_opts) fun_name = model_name + '_gnsf_get_matrices_fun' get_matrices_fun_ = Function(fun_name, [dummy], get_matrices_fun(1)) get_matrices_fun_.generate(fun_name, casadi_opts) # remove fields for json dump del model.phi_fun del model.phi_fun_jac_y del model.phi_jac_y_uhat del model.f_lo_fun_jac_x1k1uz del model.get_matrices_fun os.chdir(cwd) return