import pytest import itertools from parameterized import parameterized_class from cereal import log from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import desired_follow_distance, get_T_FOLLOW from openpilot.selfdrive.test.longitudinal_maneuvers.maneuver import Maneuver def run_following_distance_simulation(v_lead, t_end=100.0, e2e=False, personality=0): man = Maneuver( '', duration=t_end, initial_speed=float(v_lead), lead_relevancy=True, initial_distance_lead=100, speed_lead_values=[v_lead], breakpoints=[0.], e2e=e2e, personality=personality, ) valid, output = man.evaluate() assert valid return output[-1,2] - output[-1,1] @parameterized_class(("e2e", "personality", "speed"), itertools.product( [True, False], # e2e [log.LongitudinalPersonality.relaxed, # personality log.LongitudinalPersonality.standard, log.LongitudinalPersonality.aggressive], [0,10,35])) # speed class TestFollowingDistance: def test_following_distance(self): v_lead = float(self.speed) simulation_steady_state = run_following_distance_simulation(v_lead, e2e=self.e2e, personality=self.personality) correct_steady_state = desired_follow_distance(v_lead, v_lead, get_T_FOLLOW(self.personality)) err_ratio = 0.2 if self.e2e else 0.1 assert simulation_steady_state == pytest.approx(correct_steady_state, abs=err_ratio * correct_steady_state + .5)