# Python version of https://gist.github.com/antoinebrl/7d00d5cb6c95ef194c737392ef7e476a from tinygrad.helpers import fetch from pathlib import Path from tqdm import tqdm import tarfile, os def imagenet_extract(file, path, small=False): with tarfile.open(name=file) as tar: if small: # Show progressbar only for big files for member in tar.getmembers(): tar.extract(path=path, member=member) else: for member in tqdm(iterable=tar.getmembers(), total=len(tar.getmembers())): tar.extract(path=path, member=member) tar.close() def imagenet_prepare_val(): # Read in the labels file with open(Path(__file__).parent / "imagenet" / "imagenet_2012_validation_synset_labels.txt", 'r') as f: labels = f.read().splitlines() f.close() # Get a list of images images = os.listdir(Path(__file__).parent / "imagenet" / "val") images.sort() # Create folders and move files into those for co,dir in enumerate(labels): os.makedirs(Path(__file__).parent / "imagenet" / "val" / dir, exist_ok=True) os.replace(Path(__file__).parent / "imagenet" / "val" / images[co], Path(__file__).parent / "imagenet" / "val" / dir / images[co]) os.remove(Path(__file__).parent / "imagenet" / "imagenet_2012_validation_synset_labels.txt") def imagenet_prepare_train(): images = os.listdir(Path(__file__).parent / "imagenet" / "train") for co,tarf in enumerate(images): # for each tar file found. Create a folder with its name. Extract into that folder. Remove tar file if Path(Path(__file__).parent / "imagenet" / "train" / images[co]).is_file(): images[co] = tarf[:-4] # remove .tar from extracted tar files os.makedirs(Path(__file__).parent / "imagenet" / "train" / images[co], exist_ok=True) imagenet_extract(Path(__file__).parent / "imagenet" / "train" / tarf, Path(__file__).parent/ "imagenet" / "train" / images[co], small=True) os.remove(Path(__file__).parent / "imagenet" / "train" / tarf) if __name__ == "__main__": os.makedirs(Path(__file__).parent / "imagenet", exist_ok=True) os.makedirs(Path(__file__).parent / "imagenet" / "val", exist_ok=True) os.makedirs(Path(__file__).parent / "imagenet" / "train", exist_ok=True) fetch("https://raw.githubusercontent.com/raghakot/keras-vis/master/resources/imagenet_class_index.json", Path(__file__).parent / "imagenet" / "imagenet_class_index.json") fetch("https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_2012_validation_synset_labels.txt", Path(__file__).parent / "imagenet"/ "imagenet_2012_validation_synset_labels.txt") fetch("https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar", Path(__file__).parent / "imagenet" / "ILSVRC2012_img_val.tar") # 7GB imagenet_extract(Path(__file__).parent / "imagenet" / "ILSVRC2012_img_val.tar", Path(__file__).parent / "imagenet" / "val") imagenet_prepare_val() if os.getenv('IMGNET_TRAIN', None) is not None: fetch("https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar", Path(__file__).parent / "imagenet" / "ILSVRC2012_img_train.tar") #138GB! imagenet_extract(Path(__file__).parent / "imagenet" / "ILSVRC2012_img_train.tar", Path(__file__).parent / "imagenet" / "train") imagenet_prepare_train()