from tinygrad import Device from tinygrad.helpers import getenv, DEBUG, BEAM from tinygrad.engine.search import beam_search, time_linearizer, bufs_from_lin from extra.optimization.helpers import load_worlds, ast_str_to_lin if __name__ == "__main__": filter_reduce = bool(getenv("FILTER_REDUCE")) ast_strs = load_worlds(filter_reduce=filter_reduce, filter_novariable=True) dev = Device[Device.DEFAULT] test_n = getenv("TEST_N", 10) single = getenv("NUM", -1) if single != -1: ast_strs = ast_strs[single:single+1] beam_won, tested = 0, 0 for num, ast in enumerate(ast_strs[:test_n]): def new_lin(): return ast_str_to_lin(ast, opts=dev.renderer) k = new_lin() # k.required_optimizations() if not (used_tensor_cores:=k.apply_tensor_cores(getenv("TC", 1))): k.hand_coded_optimizations() assert BEAM > 0 lins = [(("tc" if used_tensor_cores else "hc"), k)] if used_tensor_cores: lins.append(("hc", new_lin())) lins[-1][1].hand_coded_optimizations() kb = new_lin() # kb.required_optimizations() test_rawbuffers = bufs_from_lin(kb) # allocate scratch buffers for optimization lins.append((f"beam{BEAM.value}", beam_search(kb, test_rawbuffers, BEAM.value, bool(getenv("BEAM_ESTIMATE", 1))))) timed = sorted([(nm, tk, time_linearizer(tk, test_rawbuffers, allow_test_size=False, clear_l2=True)) for nm, tk in lins], key=lambda x: x[2]) if DEBUG >= 1: print(" < ".join(f"{nm:6s} : {lin.colored_shape(30, dense=True)} : {tm*1e6:8.2f} us" for nm, lin, tm in timed)) tested += 1 if timed[0][0].startswith("beam"): beam_won += 1 print(f"{beam_won=} / {tested=} = {beam_won/tested:.3f}")