import unittest from extra.export_model import export_model, EXPORT_SUPPORTED_DEVICE from tinygrad.tensor import Tensor, Device from tinygrad import dtypes import json class MockMultiInputModel: def forward(self, x1, x2, x3): return x1 + x2 + x3 class MockMultiOutputModel: def __call__(self, x1): return x1 + 2.0, x1.pad(((0, 0), (0, 1))) + 1.0 # TODO: move compile_efficientnet tests here @unittest.skipUnless(Device.DEFAULT in EXPORT_SUPPORTED_DEVICE, f"Model export is not supported on {Device.DEFAULT}") class TextModelExport(unittest.TestCase): def test_multi_input_model_export(self): model = MockMultiInputModel() inputs = [Tensor.rand(2,2), Tensor.rand(2,2), Tensor.rand(2,2)] prg, inp_sizes, _, _ = export_model(model, "", *inputs) prg = json.loads(prg) assert len(inputs) == len(prg["inputs"]) == len(inp_sizes), f"Model and exported inputs don't match: mdl={len(inputs)}, prg={len(prg['inputs'])}, inp_sizes={len(inp_sizes)}" # noqa: E501 for i in range(len(inputs)): assert f"input{i}" in inp_sizes, f"input{i} not captured in inp_sizes" assert f"input{i}" in prg["buffers"], f"input{i} not captured in exported buffers" for i, exported_input in enumerate(prg["inputs"]): assert inputs[i].dtype.name == exported_input["dtype"], f"Model and exported input dtype don't match: mdl={inputs[i].dtype.name}, prg={exported_input['dtype']}" # noqa: E501 def test_multi_output_model_export(self): model = MockMultiOutputModel() input_tensor = Tensor.rand(2,2) outputs = model(input_tensor) prg, _, out_sizes, _ = export_model(model, "", input_tensor) prg = json.loads(prg) assert len(outputs) == len(prg["outputs"]) == len(out_sizes), f"Model and exported outputs don't match: mdl={len(outputs)}, prg={len(prg['outputs'])}, inp_sizes={len(out_sizes)}" # noqa: E501 for i in range(len(outputs)): assert f"output{i}" in out_sizes, f"output{i} not captured in out_sizes" assert f"output{i}" in prg["buffers"], f"output{i} not captured in exported buffers" for i, exported_output in enumerate(prg["outputs"]): assert outputs[i].dtype.name == exported_output["dtype"], f"Model and exported output dtype don't match: mdl={outputs[i].dtype.name}, prg={exported_output['dtype']}" # noqa: E501 @unittest.skipUnless(Device.DEFAULT == "WEBGPU", "Testing WebGPU specific model export behavior") class TextModelExportWebGPU(unittest.TestCase): def test_exported_input_output_dtypes(self): class MyModel: def forward(self, *inputs): return tuple([(inp+2).cast(inp.dtype) for inp in inputs]) model = MyModel() # [:-1] because "ulong" and "long" is not supported inputs = [Tensor.randn(2, dtype=dt) for dt in dtypes.uints[:-1] + dtypes.sints[:-1] + (dtypes.bool, dtypes.float)] prg, _, _, _ = export_model(model, "webgpu", *inputs) expected_buffer_types = ["Uint"]*len(dtypes.uints[:-1]) + ["Int"]*len(dtypes.sints[:-1]) + ["Int", "Float"] for i, expected_buffer_type in enumerate(expected_buffer_types): dt = inputs[i].dtype expected_arr_prefix = f"{expected_buffer_type}{dt.itemsize*8}" # test input buffers self.assertIn(f"new {expected_arr_prefix}Array(gpuWriteBuffer{i}.getMappedRange()).set(_input{i});", prg) # test output buffers self.assertIn(f"const resultBuffer{i} = new {expected_arr_prefix}Array(gpuReadBuffer{i}.size/{dt.itemsize});", prg) self.assertIn(f"resultBuffer{i}.set(new {expected_arr_prefix}Array(gpuReadBuffer{i}.getMappedRange()));", prg) if __name__ == '__main__': unittest.main()