import numpy as np from openpilot.common.params import Params from openpilot.common.realtime import DT_CTRL from opendbc.can.packer import CANPacker from openpilot.selfdrive.car.body import bodycan from openpilot.selfdrive.car.body.values import SPEED_FROM_RPM from openpilot.selfdrive.controls.lib.pid import PIDController MAX_TORQUE = 500 MAX_TORQUE_RATE = 50 MAX_ANGLE_ERROR = np.radians(7) MAX_POS_INTEGRATOR = 0.2 # meters MAX_TURN_INTEGRATOR = 0.1 # meters class CarController: def __init__(self, dbc_name, CP, VM): self.frame = 0 self.packer = CANPacker(dbc_name) # Speed, balance and turn PIDs self.speed_pid = PIDController(0.115, k_i=0.23, rate=1/DT_CTRL) self.balance_pid = PIDController(1300, k_i=0, k_d=280, rate=1/DT_CTRL) self.turn_pid = PIDController(110, k_i=11.5, rate=1/DT_CTRL) self.wheeled_speed_pid = PIDController(110, k_i=11.5, rate=1/DT_CTRL) self.torque_r_filtered = 0. self.torque_l_filtered = 0. params = Params() self.wheeled_body = params.get("WheeledBody") @staticmethod def deadband_filter(torque, deadband): if torque > 0: torque += deadband else: torque -= deadband return torque def update(self, CC, CS, now_nanos): torque_l = 0 torque_r = 0 llk_valid = len(CC.orientationNED) > 1 and len(CC.angularVelocity) > 1 if CC.enabled and llk_valid: # Read these from the joystick # TODO: this isn't acceleration, okay? speed_desired = CC.actuators.accel / 5. speed_diff_desired = -CC.actuators.steer / 2. speed_measured = SPEED_FROM_RPM * (CS.out.wheelSpeeds.fl + CS.out.wheelSpeeds.fr) / 2. speed_error = speed_desired - speed_measured if self.wheeled_body is None: freeze_integrator = ((speed_error < 0 and self.speed_pid.error_integral <= -MAX_POS_INTEGRATOR) or (speed_error > 0 and self.speed_pid.error_integral >= MAX_POS_INTEGRATOR)) angle_setpoint = self.speed_pid.update(speed_error, freeze_integrator=freeze_integrator) # Clip angle error, this is enough to get up from stands angle_error = np.clip((-CC.orientationNED[1]) - angle_setpoint, -MAX_ANGLE_ERROR, MAX_ANGLE_ERROR) angle_error_rate = np.clip(-CC.angularVelocity[1], -1., 1.) torque = self.balance_pid.update(angle_error, error_rate=angle_error_rate) else: torque = self.wheeled_speed_pid.update(speed_error, freeze_integrator=False) speed_diff_measured = SPEED_FROM_RPM * (CS.out.wheelSpeeds.fl - CS.out.wheelSpeeds.fr) turn_error = speed_diff_measured - speed_diff_desired freeze_integrator = ((turn_error < 0 and self.turn_pid.error_integral <= -MAX_TURN_INTEGRATOR) or (turn_error > 0 and self.turn_pid.error_integral >= MAX_TURN_INTEGRATOR)) torque_diff = self.turn_pid.update(turn_error, freeze_integrator=freeze_integrator) # Combine 2 PIDs outputs torque_r = torque + torque_diff torque_l = torque - torque_diff # Torque rate limits self.torque_r_filtered = np.clip(self.deadband_filter(torque_r, 10), self.torque_r_filtered - MAX_TORQUE_RATE, self.torque_r_filtered + MAX_TORQUE_RATE) self.torque_l_filtered = np.clip(self.deadband_filter(torque_l, 10), self.torque_l_filtered - MAX_TORQUE_RATE, self.torque_l_filtered + MAX_TORQUE_RATE) torque_r = int(np.clip(self.torque_r_filtered, -MAX_TORQUE, MAX_TORQUE)) torque_l = int(np.clip(self.torque_l_filtered, -MAX_TORQUE, MAX_TORQUE)) can_sends = [] can_sends.append(bodycan.create_control(self.packer, torque_l, torque_r)) new_actuators = CC.actuators.copy() new_actuators.accel = torque_l new_actuators.steer = torque_r new_actuators.steerOutputCan = torque_r self.frame += 1 return new_actuators, can_sends