#include "system/sensord/sensors/bmx055_magn.h" #include #include #include #include #include "common/swaglog.h" #include "common/util.h" static int16_t compensate_x(trim_data_t trim_data, int16_t mag_data_x, uint16_t data_rhall) { uint16_t process_comp_x0 = data_rhall; int32_t process_comp_x1 = ((int32_t)trim_data.dig_xyz1) * 16384; uint16_t process_comp_x2 = ((uint16_t)(process_comp_x1 / process_comp_x0)) - ((uint16_t)0x4000); int16_t retval = ((int16_t)process_comp_x2); int32_t process_comp_x3 = (((int32_t)retval) * ((int32_t)retval)); int32_t process_comp_x4 = (((int32_t)trim_data.dig_xy2) * (process_comp_x3 / 128)); int32_t process_comp_x5 = (int32_t)(((int16_t)trim_data.dig_xy1) * 128); int32_t process_comp_x6 = ((int32_t)retval) * process_comp_x5; int32_t process_comp_x7 = (((process_comp_x4 + process_comp_x6) / 512) + ((int32_t)0x100000)); int32_t process_comp_x8 = ((int32_t)(((int16_t)trim_data.dig_x2) + ((int16_t)0xA0))); int32_t process_comp_x9 = ((process_comp_x7 * process_comp_x8) / 4096); int32_t process_comp_x10 = ((int32_t)mag_data_x) * process_comp_x9; retval = ((int16_t)(process_comp_x10 / 8192)); retval = (retval + (((int16_t)trim_data.dig_x1) * 8)) / 16; return retval; } static int16_t compensate_y(trim_data_t trim_data, int16_t mag_data_y, uint16_t data_rhall) { uint16_t process_comp_y0 = trim_data.dig_xyz1; int32_t process_comp_y1 = (((int32_t)trim_data.dig_xyz1) * 16384) / process_comp_y0; uint16_t process_comp_y2 = ((uint16_t)process_comp_y1) - ((uint16_t)0x4000); int16_t retval = ((int16_t)process_comp_y2); int32_t process_comp_y3 = ((int32_t) retval) * ((int32_t)retval); int32_t process_comp_y4 = ((int32_t)trim_data.dig_xy2) * (process_comp_y3 / 128); int32_t process_comp_y5 = ((int32_t)(((int16_t)trim_data.dig_xy1) * 128)); int32_t process_comp_y6 = ((process_comp_y4 + (((int32_t)retval) * process_comp_y5)) / 512); int32_t process_comp_y7 = ((int32_t)(((int16_t)trim_data.dig_y2) + ((int16_t)0xA0))); int32_t process_comp_y8 = (((process_comp_y6 + ((int32_t)0x100000)) * process_comp_y7) / 4096); int32_t process_comp_y9 = (((int32_t)mag_data_y) * process_comp_y8); retval = (int16_t)(process_comp_y9 / 8192); retval = (retval + (((int16_t)trim_data.dig_y1) * 8)) / 16; return retval; } static int16_t compensate_z(trim_data_t trim_data, int16_t mag_data_z, uint16_t data_rhall) { int16_t process_comp_z0 = ((int16_t)data_rhall) - ((int16_t) trim_data.dig_xyz1); int32_t process_comp_z1 = (((int32_t)trim_data.dig_z3) * ((int32_t)(process_comp_z0))) / 4; int32_t process_comp_z2 = (((int32_t)(mag_data_z - trim_data.dig_z4)) * 32768); int32_t process_comp_z3 = ((int32_t)trim_data.dig_z1) * (((int16_t)data_rhall) * 2); int16_t process_comp_z4 = (int16_t)((process_comp_z3 + (32768)) / 65536); int32_t retval = ((process_comp_z2 - process_comp_z1) / (trim_data.dig_z2 + process_comp_z4)); /* saturate result to +/- 2 micro-tesla */ retval = std::clamp(retval, -32767, 32767); /* Conversion of LSB to micro-tesla*/ retval = retval / 16; return (int16_t)retval; } BMX055_Magn::BMX055_Magn(I2CBus *bus) : I2CSensor(bus) {} int BMX055_Magn::init() { uint8_t trim_x1y1[2] = {0}; uint8_t trim_x2y2[2] = {0}; uint8_t trim_xy1xy2[2] = {0}; uint8_t trim_z1[2] = {0}; uint8_t trim_z2[2] = {0}; uint8_t trim_z3[2] = {0}; uint8_t trim_z4[2] = {0}; uint8_t trim_xyz1[2] = {0}; // suspend -> sleep int ret = set_register(BMX055_MAGN_I2C_REG_PWR_0, 0x01); if (ret < 0) { LOGE("Enabling power failed: %d", ret); goto fail; } util::sleep_for(5); // wait until the chip is powered on ret = verify_chip_id(BMX055_MAGN_I2C_REG_ID, {BMX055_MAGN_CHIP_ID}); if (ret == -1) { goto fail; } // Load magnetometer trim ret = read_register(BMX055_MAGN_I2C_REG_DIG_X1, trim_x1y1, 2); if (ret < 0) goto fail; ret = read_register(BMX055_MAGN_I2C_REG_DIG_X2, trim_x2y2, 2); if (ret < 0) goto fail; ret = read_register(BMX055_MAGN_I2C_REG_DIG_XY2, trim_xy1xy2, 2); if (ret < 0) goto fail; ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z1_LSB, trim_z1, 2); if (ret < 0) goto fail; ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z2_LSB, trim_z2, 2); if (ret < 0) goto fail; ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z3_LSB, trim_z3, 2); if (ret < 0) goto fail; ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z4_LSB, trim_z4, 2); if (ret < 0) goto fail; ret = read_register(BMX055_MAGN_I2C_REG_DIG_XYZ1_LSB, trim_xyz1, 2); if (ret < 0) goto fail; // Read trim data trim_data.dig_x1 = trim_x1y1[0]; trim_data.dig_y1 = trim_x1y1[1]; trim_data.dig_x2 = trim_x2y2[0]; trim_data.dig_y2 = trim_x2y2[1]; trim_data.dig_xy1 = trim_xy1xy2[1]; // NB: MSB/LSB swapped trim_data.dig_xy2 = trim_xy1xy2[0]; trim_data.dig_z1 = read_16_bit(trim_z1[0], trim_z1[1]); trim_data.dig_z2 = read_16_bit(trim_z2[0], trim_z2[1]); trim_data.dig_z3 = read_16_bit(trim_z3[0], trim_z3[1]); trim_data.dig_z4 = read_16_bit(trim_z4[0], trim_z4[1]); trim_data.dig_xyz1 = read_16_bit(trim_xyz1[0], trim_xyz1[1] & 0x7f); assert(trim_data.dig_xyz1 != 0); perform_self_test(); // f_max = 1 / (145us * nXY + 500us * NZ + 980us) // Chose NXY = 7, NZ = 12, which gives 125 Hz, // and has the same ratio as the high accuracy preset ret = set_register(BMX055_MAGN_I2C_REG_REPXY, (7 - 1) / 2); if (ret < 0) { goto fail; } ret = set_register(BMX055_MAGN_I2C_REG_REPZ, 12 - 1); if (ret < 0) { goto fail; } return 0; fail: return ret; } int BMX055_Magn::shutdown() { // move to suspend mode int ret = set_register(BMX055_MAGN_I2C_REG_PWR_0, 0); if (ret < 0) { LOGE("Could not move BMX055 MAGN in suspend mode!"); } return ret; } bool BMX055_Magn::perform_self_test() { uint8_t buffer[8]; int16_t x, y; int16_t neg_z, pos_z; // Increase z reps for less false positives (~30 Hz ODR) set_register(BMX055_MAGN_I2C_REG_REPXY, 1); set_register(BMX055_MAGN_I2C_REG_REPZ, 64 - 1); // Clean existing measurement read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer)); uint8_t forced = BMX055_MAGN_FORCED; // Negative current set_register(BMX055_MAGN_I2C_REG_MAG, forced | (uint8_t(0b10) << 6)); util::sleep_for(100); read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer)); parse_xyz(buffer, &x, &y, &neg_z); // Positive current set_register(BMX055_MAGN_I2C_REG_MAG, forced | (uint8_t(0b11) << 6)); util::sleep_for(100); read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer)); parse_xyz(buffer, &x, &y, &pos_z); // Put back in normal mode set_register(BMX055_MAGN_I2C_REG_MAG, 0); int16_t diff = pos_z - neg_z; bool passed = (diff > 180) && (diff < 240); if (!passed) { LOGE("self test failed: neg %d pos %d diff %d", neg_z, pos_z, diff); } return passed; } bool BMX055_Magn::parse_xyz(uint8_t buffer[8], int16_t *x, int16_t *y, int16_t *z) { bool ready = buffer[6] & 0x1; if (ready) { int16_t mdata_x = (int16_t) (((int16_t)buffer[1] << 8) | buffer[0]) >> 3; int16_t mdata_y = (int16_t) (((int16_t)buffer[3] << 8) | buffer[2]) >> 3; int16_t mdata_z = (int16_t) (((int16_t)buffer[5] << 8) | buffer[4]) >> 1; uint16_t data_r = (uint16_t) (((uint16_t)buffer[7] << 8) | buffer[6]) >> 2; assert(data_r != 0); *x = compensate_x(trim_data, mdata_x, data_r); *y = compensate_y(trim_data, mdata_y, data_r); *z = compensate_z(trim_data, mdata_z, data_r); } return ready; } bool BMX055_Magn::get_event(MessageBuilder &msg, uint64_t ts) { uint64_t start_time = nanos_since_boot(); uint8_t buffer[8]; int16_t _x, _y, x, y, z; int len = read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer)); assert(len == sizeof(buffer)); bool parsed = parse_xyz(buffer, &_x, &_y, &z); if (parsed) { auto event = msg.initEvent().initMagnetometer(); event.setSource(cereal::SensorEventData::SensorSource::BMX055); event.setVersion(2); event.setSensor(SENSOR_MAGNETOMETER_UNCALIBRATED); event.setType(SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED); event.setTimestamp(start_time); // Move magnetometer into same reference frame as accel/gryo x = -_y; y = _x; // Axis convention x = -x; y = -y; float xyz[] = {(float)x, (float)y, (float)z}; auto svec = event.initMagneticUncalibrated(); svec.setV(xyz); svec.setStatus(true); } // The BMX055 Magnetometer has no FIFO mode. Self running mode only goes // up to 30 Hz. Therefore we put in forced mode, and request measurements // at a 100 Hz. When reading the registers we have to check the ready bit // To verify the measurement was completed this cycle. set_register(BMX055_MAGN_I2C_REG_MAG, BMX055_MAGN_FORCED); return parsed; }