# functions common among cars from collections import namedtuple from dataclasses import dataclass from enum import ReprEnum from typing import Dict, List, Optional, Union import capnp from cereal import car from openpilot.common.numpy_fast import clip, interp from openpilot.selfdrive.car.docs_definitions import CarInfo # kg of standard extra cargo to count for drive, gas, etc... STD_CARGO_KG = 136. ButtonType = car.CarState.ButtonEvent.Type EventName = car.CarEvent.EventName AngleRateLimit = namedtuple('AngleRateLimit', ['speed_bp', 'angle_v']) def apply_hysteresis(val: float, val_steady: float, hyst_gap: float) -> float: if val > val_steady + hyst_gap: val_steady = val - hyst_gap elif val < val_steady - hyst_gap: val_steady = val + hyst_gap return val_steady def create_button_events(cur_btn: int, prev_btn: int, buttons_dict: Dict[int, capnp.lib.capnp._EnumModule], unpressed_btn: int = 0) -> List[capnp.lib.capnp._DynamicStructBuilder]: events: List[capnp.lib.capnp._DynamicStructBuilder] = [] if cur_btn == prev_btn: return events # Add events for button presses, multiple when a button switches without going to unpressed for pressed, btn in ((False, prev_btn), (True, cur_btn)): if btn != unpressed_btn: events.append(car.CarState.ButtonEvent(pressed=pressed, type=buttons_dict.get(btn, ButtonType.unknown))) return events def gen_empty_fingerprint(): return {i: {} for i in range(8)} # these params were derived for the Civic and used to calculate params for other cars class VehicleDynamicsParams: MASS = 1326. + STD_CARGO_KG WHEELBASE = 2.70 CENTER_TO_FRONT = WHEELBASE * 0.4 CENTER_TO_REAR = WHEELBASE - CENTER_TO_FRONT ROTATIONAL_INERTIA = 2500 TIRE_STIFFNESS_FRONT = 192150 TIRE_STIFFNESS_REAR = 202500 # TODO: get actual value, for now starting with reasonable value for # civic and scaling by mass and wheelbase def scale_rot_inertia(mass, wheelbase): return VehicleDynamicsParams.ROTATIONAL_INERTIA * mass * wheelbase ** 2 / (VehicleDynamicsParams.MASS * VehicleDynamicsParams.WHEELBASE ** 2) # TODO: start from empirically derived lateral slip stiffness for the civic and scale by # mass and CG position, so all cars will have approximately similar dyn behaviors def scale_tire_stiffness(mass, wheelbase, center_to_front, tire_stiffness_factor): center_to_rear = wheelbase - center_to_front tire_stiffness_front = (VehicleDynamicsParams.TIRE_STIFFNESS_FRONT * tire_stiffness_factor) * mass / VehicleDynamicsParams.MASS * \ (center_to_rear / wheelbase) / (VehicleDynamicsParams.CENTER_TO_REAR / VehicleDynamicsParams.WHEELBASE) tire_stiffness_rear = (VehicleDynamicsParams.TIRE_STIFFNESS_REAR * tire_stiffness_factor) * mass / VehicleDynamicsParams.MASS * \ (center_to_front / wheelbase) / (VehicleDynamicsParams.CENTER_TO_FRONT / VehicleDynamicsParams.WHEELBASE) return tire_stiffness_front, tire_stiffness_rear DbcDict = Dict[str, str] def dbc_dict(pt_dbc, radar_dbc, chassis_dbc=None, body_dbc=None) -> DbcDict: return {'pt': pt_dbc, 'radar': radar_dbc, 'chassis': chassis_dbc, 'body': body_dbc} def apply_driver_steer_torque_limits(apply_torque, apply_torque_last, driver_torque, LIMITS): # limits due to driver torque driver_max_torque = LIMITS.STEER_MAX + (LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER driver_min_torque = -LIMITS.STEER_MAX + (-LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER max_steer_allowed = max(min(LIMITS.STEER_MAX, driver_max_torque), 0) min_steer_allowed = min(max(-LIMITS.STEER_MAX, driver_min_torque), 0) apply_torque = clip(apply_torque, min_steer_allowed, max_steer_allowed) # slow rate if steer torque increases in magnitude if apply_torque_last > 0: apply_torque = clip(apply_torque, max(apply_torque_last - LIMITS.STEER_DELTA_DOWN, -LIMITS.STEER_DELTA_UP), apply_torque_last + LIMITS.STEER_DELTA_UP) else: apply_torque = clip(apply_torque, apply_torque_last - LIMITS.STEER_DELTA_UP, min(apply_torque_last + LIMITS.STEER_DELTA_DOWN, LIMITS.STEER_DELTA_UP)) return int(round(float(apply_torque))) def apply_dist_to_meas_limits(val, val_last, val_meas, STEER_DELTA_UP, STEER_DELTA_DOWN, STEER_ERROR_MAX, STEER_MAX): # limits due to comparison of commanded val VS measured val (torque/angle/curvature) max_lim = min(max(val_meas + STEER_ERROR_MAX, STEER_ERROR_MAX), STEER_MAX) min_lim = max(min(val_meas - STEER_ERROR_MAX, -STEER_ERROR_MAX), -STEER_MAX) val = clip(val, min_lim, max_lim) # slow rate if val increases in magnitude if val_last > 0: val = clip(val, max(val_last - STEER_DELTA_DOWN, -STEER_DELTA_UP), val_last + STEER_DELTA_UP) else: val = clip(val, val_last - STEER_DELTA_UP, min(val_last + STEER_DELTA_DOWN, STEER_DELTA_UP)) return float(val) def apply_meas_steer_torque_limits(apply_torque, apply_torque_last, motor_torque, LIMITS): return int(round(apply_dist_to_meas_limits(apply_torque, apply_torque_last, motor_torque, LIMITS.STEER_DELTA_UP, LIMITS.STEER_DELTA_DOWN, LIMITS.STEER_ERROR_MAX, LIMITS.STEER_MAX))) def apply_std_steer_angle_limits(apply_angle, apply_angle_last, v_ego, LIMITS): # pick angle rate limits based on wind up/down steer_up = apply_angle_last * apply_angle >= 0. and abs(apply_angle) > abs(apply_angle_last) rate_limits = LIMITS.ANGLE_RATE_LIMIT_UP if steer_up else LIMITS.ANGLE_RATE_LIMIT_DOWN angle_rate_lim = interp(v_ego, rate_limits.speed_bp, rate_limits.angle_v) return clip(apply_angle, apply_angle_last - angle_rate_lim, apply_angle_last + angle_rate_lim) def common_fault_avoidance(fault_condition: bool, request: bool, above_limit_frames: int, max_above_limit_frames: int, max_mismatching_frames: int = 1): """ Several cars have the ability to work around their EPS limits by cutting the request bit of their LKAS message after a certain number of frames above the limit. """ # Count up to max_above_limit_frames, at which point we need to cut the request for above_limit_frames to avoid a fault if request and fault_condition: above_limit_frames += 1 else: above_limit_frames = 0 # Once we cut the request bit, count additionally to max_mismatching_frames before setting the request bit high again. # Some brands do not respect our workaround without multiple messages on the bus, for example if above_limit_frames > max_above_limit_frames: request = False if above_limit_frames >= max_above_limit_frames + max_mismatching_frames: above_limit_frames = 0 return above_limit_frames, request def crc8_pedal(data): crc = 0xFF # standard init value poly = 0xD5 # standard crc8: x8+x7+x6+x4+x2+1 size = len(data) for i in range(size - 1, -1, -1): crc ^= data[i] for _ in range(8): if ((crc & 0x80) != 0): crc = ((crc << 1) ^ poly) & 0xFF else: crc <<= 1 return crc def create_gas_interceptor_command(packer, gas_amount, idx): # Common gas pedal msg generator enable = gas_amount > 0.001 values = { "ENABLE": enable, "COUNTER_PEDAL": idx & 0xF, } if enable: values["GAS_COMMAND"] = gas_amount * 255. values["GAS_COMMAND2"] = gas_amount * 255. dat = packer.make_can_msg("GAS_COMMAND", 0, values)[2] checksum = crc8_pedal(dat[:-1]) values["CHECKSUM_PEDAL"] = checksum return packer.make_can_msg("GAS_COMMAND", 0, values) def make_can_msg(addr, dat, bus): return [addr, 0, dat, bus] def get_safety_config(safety_model, safety_param = None): ret = car.CarParams.SafetyConfig.new_message() ret.safetyModel = safety_model if safety_param is not None: ret.safetyParam = safety_param return ret class CanBusBase: offset: int def __init__(self, CP, fingerprint: Optional[Dict[int, Dict[int, int]]]) -> None: if CP is None: assert fingerprint is not None num = max([k for k, v in fingerprint.items() if len(v)], default=0) // 4 + 1 else: num = len(CP.safetyConfigs) self.offset = 4 * (num - 1) class CanSignalRateCalculator: """ Calculates the instantaneous rate of a CAN signal by using the counter variable and the known frequency of the CAN message that contains it. """ def __init__(self, frequency): self.frequency = frequency self.previous_counter = 0 self.previous_value = 0 self.rate = 0 def update(self, current_value, current_counter): if current_counter != self.previous_counter: self.rate = (current_value - self.previous_value) * self.frequency self.previous_counter = current_counter self.previous_value = current_value return self.rate CarInfos = Union[CarInfo, List[CarInfo]] @dataclass(order=True) class PlatformConfig: platform_str: str car_info: CarInfos dbc_dict: DbcDict def __hash__(self) -> int: return hash(self.platform_str) class Platforms(str, ReprEnum): config: PlatformConfig def __new__(cls, platform_config: PlatformConfig): member = str.__new__(cls, platform_config.platform_str) member.config = platform_config member._value_ = platform_config.platform_str return member @classmethod def create_dbc_map(cls) -> Dict[str, DbcDict]: return {p.config.platform_str: p.config.dbc_dict for p in cls} @classmethod def create_carinfo_map(cls) -> Dict[str, CarInfos]: return {p.config.platform_str: p.config.car_info for p in cls}