# ifndef CPPAD_LOCAL_SIN_OP_HPP # define CPPAD_LOCAL_SIN_OP_HPP /* -------------------------------------------------------------------------- CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-17 Bradley M. Bell CppAD is distributed under multiple licenses. This distribution is under the terms of the Eclipse Public License Version 1.0. A copy of this license is included in the COPYING file of this distribution. Please visit http://www.coin-or.org/CppAD/ for information on other licenses. -------------------------------------------------------------------------- */ namespace CppAD { namespace local { // BEGIN_CPPAD_LOCAL_NAMESPACE /*! \file sin_op.hpp Forward and reverse mode calculations for z = sin(x). */ /*! Compute forward mode Taylor coefficient for result of op = SinOp. The C++ source code corresponding to this operation is \verbatim z = sin(x) \endverbatim The auxillary result is \verbatim y = cos(x) \endverbatim The value of y, and its derivatives, are computed along with the value and derivatives of z. \copydetails CppAD::local::forward_unary2_op */ template inline void forward_sin_op( size_t p , size_t q , size_t i_z , size_t i_x , size_t cap_order , Base* taylor ) { // check assumptions CPPAD_ASSERT_UNKNOWN( NumArg(SinOp) == 1 ); CPPAD_ASSERT_UNKNOWN( NumRes(SinOp) == 2 ); CPPAD_ASSERT_UNKNOWN( q < cap_order ); CPPAD_ASSERT_UNKNOWN( p <= q ); // Taylor coefficients corresponding to argument and result Base* x = taylor + i_x * cap_order; Base* s = taylor + i_z * cap_order; Base* c = s - cap_order; // rest of this routine is identical for the following cases: // forward_sin_op, forward_cos_op, forward_sinh_op, forward_cosh_op. // (except that there is a sign difference for the hyperbolic case). size_t k; if( p == 0 ) { s[0] = sin( x[0] ); c[0] = cos( x[0] ); p++; } for(size_t j = p; j <= q; j++) { s[j] = Base(0.0); c[j] = Base(0.0); for(k = 1; k <= j; k++) { s[j] += Base(double(k)) * x[k] * c[j-k]; c[j] -= Base(double(k)) * x[k] * s[j-k]; } s[j] /= Base(double(j)); c[j] /= Base(double(j)); } } /*! Compute forward mode Taylor coefficient for result of op = SinOp. The C++ source code corresponding to this operation is \verbatim z = sin(x) \endverbatim The auxillary result is \verbatim y = cos(x) \endverbatim The value of y, and its derivatives, are computed along with the value and derivatives of z. \copydetails CppAD::local::forward_unary2_op_dir */ template inline void forward_sin_op_dir( size_t q , size_t r , size_t i_z , size_t i_x , size_t cap_order , Base* taylor ) { // check assumptions CPPAD_ASSERT_UNKNOWN( NumArg(SinOp) == 1 ); CPPAD_ASSERT_UNKNOWN( NumRes(SinOp) == 2 ); CPPAD_ASSERT_UNKNOWN( 0 < q ); CPPAD_ASSERT_UNKNOWN( q < cap_order ); // Taylor coefficients corresponding to argument and result size_t num_taylor_per_var = (cap_order-1) * r + 1; Base* x = taylor + i_x * num_taylor_per_var; Base* s = taylor + i_z * num_taylor_per_var; Base* c = s - num_taylor_per_var; // rest of this routine is identical for the following cases: // forward_sin_op, forward_cos_op, forward_sinh_op, forward_cosh_op // (except that there is a sign difference for the hyperbolic case). size_t m = (q-1) * r + 1; for(size_t ell = 0; ell < r; ell++) { s[m+ell] = Base(double(q)) * x[m + ell] * c[0]; c[m+ell] = - Base(double(q)) * x[m + ell] * s[0]; for(size_t k = 1; k < q; k++) { s[m+ell] += Base(double(k)) * x[(k-1)*r+1+ell] * c[(q-k-1)*r+1+ell]; c[m+ell] -= Base(double(k)) * x[(k-1)*r+1+ell] * s[(q-k-1)*r+1+ell]; } s[m+ell] /= Base(double(q)); c[m+ell] /= Base(double(q)); } } /*! Compute zero order forward mode Taylor coefficient for result of op = SinOp. The C++ source code corresponding to this operation is \verbatim z = sin(x) \endverbatim The auxillary result is \verbatim y = cos(x) \endverbatim The value of y is computed along with the value of z. \copydetails CppAD::local::forward_unary2_op_0 */ template inline void forward_sin_op_0( size_t i_z , size_t i_x , size_t cap_order , Base* taylor ) { // check assumptions CPPAD_ASSERT_UNKNOWN( NumArg(SinOp) == 1 ); CPPAD_ASSERT_UNKNOWN( NumRes(SinOp) == 2 ); CPPAD_ASSERT_UNKNOWN( 0 < cap_order ); // Taylor coefficients corresponding to argument and result Base* x = taylor + i_x * cap_order; Base* s = taylor + i_z * cap_order; // called z in documentation Base* c = s - cap_order; // called y in documentation s[0] = sin( x[0] ); c[0] = cos( x[0] ); } /*! Compute reverse mode partial derivatives for result of op = SinOp. The C++ source code corresponding to this operation is \verbatim z = sin(x) \endverbatim The auxillary result is \verbatim y = cos(x) \endverbatim The value of y is computed along with the value of z. \copydetails CppAD::local::reverse_unary2_op */ template inline void reverse_sin_op( size_t d , size_t i_z , size_t i_x , size_t cap_order , const Base* taylor , size_t nc_partial , Base* partial ) { // check assumptions CPPAD_ASSERT_UNKNOWN( NumArg(SinOp) == 1 ); CPPAD_ASSERT_UNKNOWN( NumRes(SinOp) == 2 ); CPPAD_ASSERT_UNKNOWN( d < cap_order ); CPPAD_ASSERT_UNKNOWN( d < nc_partial ); // Taylor coefficients and partials corresponding to argument const Base* x = taylor + i_x * cap_order; Base* px = partial + i_x * nc_partial; // Taylor coefficients and partials corresponding to first result const Base* s = taylor + i_z * cap_order; // called z in doc Base* ps = partial + i_z * nc_partial; // Taylor coefficients and partials corresponding to auxillary result const Base* c = s - cap_order; // called y in documentation Base* pc = ps - nc_partial; // rest of this routine is identical for the following cases: // reverse_sin_op, reverse_cos_op, reverse_sinh_op, reverse_cosh_op. size_t j = d; size_t k; while(j) { ps[j] /= Base(double(j)); pc[j] /= Base(double(j)); for(k = 1; k <= j; k++) { px[k] += Base(double(k)) * azmul(ps[j], c[j-k]); px[k] -= Base(double(k)) * azmul(pc[j], s[j-k]); ps[j-k] -= Base(double(k)) * azmul(pc[j], x[k]); pc[j-k] += Base(double(k)) * azmul(ps[j], x[k]); } --j; } px[0] += azmul(ps[0], c[0]); px[0] -= azmul(pc[0], s[0]); } } } // END_CPPAD_LOCAL_NAMESPACE # endif