import math from cereal import log from common.numpy_fast import interp from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED from selfdrive.controls.lib.pid import PIDController from selfdrive.controls.lib.drive_helpers import apply_deadzone #from selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY # At higher speeds (25+mph) we can assume: # Lateral acceleration achieved by a specific car correlates to # torque applied to the steering rack. It does not correlate to # wheel slip, or to speed. # This controller applies torque to achieve desired lateral # accelerations. To compensate for the low speed effects we # use a LOW_SPEED_FACTOR in the error. Additionally, there is # friction in the steering wheel that needs to be overcome to # move it at all, this is compensated for too. FRICTION_THRESHOLD = 0.2 class LatControlTorque(LatControl): def __init__(self, CP, CI): super().__init__(CP, CI) self.pid = PIDController(CP.lateralTuning.torque.kp, CP.lateralTuning.torque.ki, k_f=CP.lateralTuning.torque.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max) self.get_steer_feedforward = CI.get_steer_feedforward_function() self.use_steering_angle = CP.lateralTuning.torque.useSteeringAngle self.friction = CP.lateralTuning.torque.friction self.kf = CP.lateralTuning.torque.kf self.steering_angle_deadzone_deg = CP.lateralTuning.torque.steeringAngleDeadzoneDeg def update(self, active, CS, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk): pid_log = log.ControlsState.LateralTorqueState.new_message() if CS.vEgo < MIN_STEER_SPEED or not active: output_torque = 0.0 pid_log.active = False else: if self.use_steering_angle: actual_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll) curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0)) else: actual_curvature_vm = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll) actual_curvature_llk = llk.angularVelocityCalibrated.value[2] / CS.vEgo actual_curvature = interp(CS.vEgo, [2.0, 5.0], [actual_curvature_vm, actual_curvature_llk]) curvature_deadzone = 0.0 desired_lateral_accel = desired_curvature * CS.vEgo ** 2 # desired rate is the desired rate of change in the setpoint, not the absolute desired curvature #desired_lateral_jerk = desired_curvature_rate * CS.vEgo ** 2 actual_lateral_accel = actual_curvature * CS.vEgo ** 2 lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2 low_speed_factor = interp(CS.vEgo, [0, 10, 20], [500, 500, 200]) setpoint = desired_lateral_accel + low_speed_factor * desired_curvature measurement = actual_lateral_accel + low_speed_factor * actual_curvature error = setpoint - measurement pid_log.error = error # ff = desired_lateral_accel - params.roll * ACCELERATION_DUE_TO_GRAVITY # test hax - don't double down on VW roll comp ff = desired_lateral_accel # convert friction into lateral accel units for feedforward friction_compensation = interp(apply_deadzone(error, lateral_accel_deadzone), [-FRICTION_THRESHOLD, FRICTION_THRESHOLD], [-self.friction, self.friction]) ff += friction_compensation / self.kf freeze_integrator = CS.steeringRateLimited or CS.steeringPressed or CS.vEgo < 5 output_torque = self.pid.update(error, feedforward=ff, speed=CS.vEgo, freeze_integrator=freeze_integrator) pid_log.active = True pid_log.p = self.pid.p pid_log.i = self.pid.i pid_log.d = self.pid.d pid_log.f = self.pid.f pid_log.output = -output_torque pid_log.saturated = self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS) pid_log.actualLateralAccel = actual_lateral_accel pid_log.desiredLateralAccel = desired_lateral_accel # TODO left is positive in this convention return -output_torque, 0.0, pid_log