#!/usr/bin/env python3 import math import numpy as np from collections import deque from typing import Any import capnp from cereal import messaging, log, car from openpilot.common.params import Params from openpilot.common.realtime import DT_MDL, Priority, config_realtime_process from openpilot.common.swaglog import cloudlog from openpilot.common.simple_kalman import KF1D # Default lead acceleration decay set to 50% at 1s _LEAD_ACCEL_TAU = 1.5 # radar tracks SPEED, ACCEL = 0, 1 # Kalman filter states enum # stationary qualification parameters V_EGO_STATIONARY = 4. # no stationary object flag below this speed RADAR_TO_CENTER = 2.7 # (deprecated) RADAR is ~ 2.7m ahead from center of car RADAR_TO_CAMERA = 1.52 # RADAR is ~ 1.5m ahead from center of mesh frame class KalmanParams: def __init__(self, dt: float): # Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library. # hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s" self.A = [[1.0, dt], [0.0, 1.0]] self.C = [1.0, 0.0] #Q = np.matrix([[10., 0.0], [0.0, 100.]]) #R = 1e3 #K = np.matrix([[ 0.05705578], [ 0.03073241]]) dts = [i * 0.01 for i in range(1, 21)] K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689, 0.21372394, 0.22761098, 0.24069424, 0.253096, 0.26491023, 0.27621103, 0.28705801, 0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814, 0.35353899, 0.36200124] K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219, 0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714, 0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557, 0.26393339, 0.26278425] self.K = [[np.interp(dt, dts, K0)], [np.interp(dt, dts, K1)]] class Track: def __init__(self, identifier: int, v_lead: float, kalman_params: KalmanParams): self.identifier = identifier self.cnt = 0 self.aLeadTau = _LEAD_ACCEL_TAU self.K_A = kalman_params.A self.K_C = kalman_params.C self.K_K = kalman_params.K self.kf = KF1D([[v_lead], [0.0]], self.K_A, self.K_C, self.K_K) def update(self, d_rel: float, y_rel: float, v_rel: float, v_lead: float, measured: float): # relative values, copy self.dRel = d_rel # LONG_DIST self.yRel = y_rel # -LAT_DIST self.vRel = v_rel # REL_SPEED self.vLead = v_lead self.measured = measured # measured or estimate # computed velocity and accelerations if self.cnt > 0: self.kf.update(self.vLead) self.vLeadK = float(self.kf.x[SPEED][0]) self.aLeadK = float(self.kf.x[ACCEL][0]) # Learn if constant acceleration if abs(self.aLeadK) < 0.5: self.aLeadTau = _LEAD_ACCEL_TAU else: self.aLeadTau *= 0.9 self.cnt += 1 def reset_a_lead(self, aLeadK: float, aLeadTau: float): self.kf = KF1D([[self.vLead], [aLeadK]], self.K_A, self.K_C, self.K_K) self.aLeadK = aLeadK self.aLeadTau = aLeadTau def get_RadarState(self, model_prob: float = 0.0): return { "dRel": float(self.dRel), "yRel": float(self.yRel), "vRel": float(self.vRel), "vLead": float(self.vLead), "vLeadK": float(self.vLeadK), "aLeadK": float(self.aLeadK), "aLeadTau": float(self.aLeadTau), "status": True, "fcw": self.is_potential_fcw(model_prob), "modelProb": model_prob, "radar": True, "radarTrackId": self.identifier, } def potential_low_speed_lead(self, v_ego: float): # stop for stuff in front of you and low speed, even without model confirmation # Radar points closer than 0.75, are almost always glitches on toyota radars return abs(self.yRel) < 1.0 and (v_ego < V_EGO_STATIONARY) and (0.75 < self.dRel < 25) def is_potential_fcw(self, model_prob: float): return model_prob > .9 def __str__(self): ret = f"x: {self.dRel:4.1f} y: {self.yRel:4.1f} v: {self.vRel:4.1f} a: {self.aLeadK:4.1f}" return ret def laplacian_pdf(x: float, mu: float, b: float): b = max(b, 1e-4) return math.exp(-abs(x-mu)/b) def match_vision_to_track(v_ego: float, lead: capnp._DynamicStructReader, tracks: dict[int, Track]): offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA def prob(c): prob_d = laplacian_pdf(c.dRel, offset_vision_dist, lead.xStd[0]) prob_y = laplacian_pdf(c.yRel, -lead.y[0], lead.yStd[0]) prob_v = laplacian_pdf(c.vRel + v_ego, lead.v[0], lead.vStd[0]) # This isn't exactly right, but it's a good heuristic return prob_d * prob_y * prob_v track = max(tracks.values(), key=prob) # if no 'sane' match is found return -1 # stationary radar points can be false positives dist_sane = abs(track.dRel - offset_vision_dist) < max([(offset_vision_dist)*.25, 5.0]) vel_sane = (abs(track.vRel + v_ego - lead.v[0]) < 10) or (v_ego + track.vRel > 3) if dist_sane and vel_sane: return track else: return None def get_RadarState_from_vision(lead_msg: capnp._DynamicStructReader, v_ego: float, model_v_ego: float): lead_v_rel_pred = lead_msg.v[0] - model_v_ego return { "dRel": float(lead_msg.x[0] - RADAR_TO_CAMERA), "yRel": float(-lead_msg.y[0]), "vRel": float(lead_v_rel_pred), "vLead": float(v_ego + lead_v_rel_pred), "vLeadK": float(v_ego + lead_v_rel_pred), "aLeadK": float(lead_msg.a[0]), "aLeadTau": 0.3, "fcw": False, "modelProb": float(lead_msg.prob), "status": True, "radar": False, "radarTrackId": -1, } def get_lead(v_ego: float, ready: bool, tracks: dict[int, Track], lead_msg: capnp._DynamicStructReader, model_v_ego: float, low_speed_override: bool = True) -> dict[str, Any]: # Determine leads, this is where the essential logic happens if len(tracks) > 0 and ready and lead_msg.prob > .5: track = match_vision_to_track(v_ego, lead_msg, tracks) else: track = None lead_dict = {'status': False} if track is not None: lead_dict = track.get_RadarState(lead_msg.prob) elif (track is None) and ready and (lead_msg.prob > .5): lead_dict = get_RadarState_from_vision(lead_msg, v_ego, model_v_ego) if low_speed_override: low_speed_tracks = [c for c in tracks.values() if c.potential_low_speed_lead(v_ego)] if len(low_speed_tracks) > 0: closest_track = min(low_speed_tracks, key=lambda c: c.dRel) # Only choose new track if it is actually closer than the previous one if (not lead_dict['status']) or (closest_track.dRel < lead_dict['dRel']): lead_dict = closest_track.get_RadarState() return lead_dict class RadarD: def __init__(self, delay: float = 0.0): self.current_time = 0.0 self.tracks: dict[int, Track] = {} self.kalman_params = KalmanParams(DT_MDL) self.v_ego = 0.0 self.v_ego_hist = deque([0.0], maxlen=int(round(delay / DT_MDL))+1) self.last_v_ego_frame = -1 self.radar_state: capnp._DynamicStructBuilder | None = None self.radar_state_valid = False self.ready = False def update(self, sm: messaging.SubMaster, rr: car.RadarData): self.ready = sm.seen['modelV2'] self.current_time = 1e-9*max(sm.logMonoTime.values()) if sm.recv_frame['carState'] != self.last_v_ego_frame: self.v_ego = sm['carState'].vEgo self.v_ego_hist.append(self.v_ego) self.last_v_ego_frame = sm.recv_frame['carState'] ar_pts = {} for pt in rr.points: ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured] # *** remove missing points from meta data *** for ids in list(self.tracks.keys()): if ids not in ar_pts: self.tracks.pop(ids, None) # *** compute the tracks *** for ids in ar_pts: rpt = ar_pts[ids] # align v_ego by a fixed time to align it with the radar measurement v_lead = rpt[2] + self.v_ego_hist[0] # create the track if it doesn't exist or it's a new track if ids not in self.tracks: self.tracks[ids] = Track(ids, v_lead, self.kalman_params) self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, rpt[3]) # *** publish radarState *** self.radar_state_valid = sm.all_checks() and len(rr.errors) == 0 self.radar_state = log.RadarState.new_message() self.radar_state.mdMonoTime = sm.logMonoTime['modelV2'] self.radar_state.radarErrors = list(rr.errors) self.radar_state.carStateMonoTime = sm.logMonoTime['carState'] if len(sm['modelV2'].velocity.x): model_v_ego = sm['modelV2'].velocity.x[0] else: model_v_ego = self.v_ego leads_v3 = sm['modelV2'].leadsV3 if len(leads_v3) > 1: self.radar_state.leadOne = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[0], model_v_ego, low_speed_override=True) self.radar_state.leadTwo = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[1], model_v_ego, low_speed_override=False) def publish(self, pm: messaging.PubMaster): assert self.radar_state is not None radar_msg = messaging.new_message("radarState") radar_msg.valid = self.radar_state_valid radar_msg.radarState = self.radar_state pm.send("radarState", radar_msg) # fuses camera and radar data for best lead detection def main() -> None: config_realtime_process(5, Priority.CTRL_LOW) # wait for stats about the car to come in from controls cloudlog.info("radard is waiting for CarParams") CP = messaging.log_from_bytes(Params().get("CarParams", block=True), car.CarParams) cloudlog.info("radard got CarParams") # *** setup messaging sm = messaging.SubMaster(['modelV2', 'carState', 'liveTracks'], poll='modelV2') pm = messaging.PubMaster(['radarState']) RD = RadarD(CP.radarDelay) while 1: sm.update() RD.update(sm, sm['liveTracks']) RD.publish(pm) if __name__ == "__main__": main()