import numpy as np from common.realtime import sec_since_boot, DT_MDL from common.numpy_fast import interp from system.swaglog import cloudlog from selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc from selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import N as LAT_MPC_N from selfdrive.controls.lib.drive_helpers import CONTROL_N, MIN_SPEED, get_speed_error from selfdrive.controls.lib.desire_helper import DesireHelper import cereal.messaging as messaging from cereal import log TRAJECTORY_SIZE = 33 CAMERA_OFFSET = 0.04 PATH_COST = 1.0 LATERAL_MOTION_COST = 0.11 LATERAL_ACCEL_COST = 0.0 LATERAL_JERK_COST = 0.04 # Extreme steering rate is unpleasant, even # when it does not cause bad jerk. # TODO this cost should be lowered when low # speed lateral control is stable on all cars STEERING_RATE_COST = 700.0 class LateralPlanner: def __init__(self, CP, debug=False): self.DH = DesireHelper() # Vehicle model parameters used to calculate lateral movement of car self.factor1 = CP.wheelbase - CP.centerToFront self.factor2 = (CP.centerToFront * CP.mass) / (CP.wheelbase * CP.tireStiffnessRear) self.last_cloudlog_t = 0 self.solution_invalid_cnt = 0 self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3)) self.velocity_xyz = np.zeros((TRAJECTORY_SIZE, 3)) self.plan_yaw = np.zeros((TRAJECTORY_SIZE,)) self.plan_yaw_rate = np.zeros((TRAJECTORY_SIZE,)) self.t_idxs = np.arange(TRAJECTORY_SIZE) self.y_pts = np.zeros((TRAJECTORY_SIZE,)) self.v_plan = np.zeros((TRAJECTORY_SIZE,)) self.v_ego = 0.0 self.l_lane_change_prob = 0.0 self.r_lane_change_prob = 0.0 self.debug_mode = debug self.lat_mpc = LateralMpc() self.reset_mpc(np.zeros(4)) def reset_mpc(self, x0=None): if x0 is None: x0 = np.zeros(4) self.x0 = x0 self.lat_mpc.reset(x0=self.x0) def update(self, sm): # clip speed , lateral planning is not possible at 0 speed measured_curvature = sm['controlsState'].curvature v_ego_car = sm['carState'].vEgo # Parse model predictions md = sm['modelV2'] if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE: self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z]) self.t_idxs = np.array(md.position.t) self.plan_yaw = np.array(md.orientation.z) self.plan_yaw_rate = np.array(md.orientationRate.z) self.velocity_xyz = np.column_stack([md.velocity.x, md.velocity.y, md.velocity.z]) car_speed = np.linalg.norm(self.velocity_xyz, axis=1) - get_speed_error(md, v_ego_car) self.v_plan = np.clip(car_speed, MIN_SPEED, np.inf) self.v_ego = self.v_plan[0] # Lane change logic desire_state = md.meta.desireState if len(desire_state): self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft] self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight] lane_change_prob = self.l_lane_change_prob + self.r_lane_change_prob self.DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob) self.lat_mpc.set_weights(PATH_COST, LATERAL_MOTION_COST, LATERAL_ACCEL_COST, LATERAL_JERK_COST, STEERING_RATE_COST) y_pts = self.path_xyz[:LAT_MPC_N+1, 1] heading_pts = self.plan_yaw[:LAT_MPC_N+1] yaw_rate_pts = self.plan_yaw_rate[:LAT_MPC_N+1] self.y_pts = y_pts assert len(y_pts) == LAT_MPC_N + 1 assert len(heading_pts) == LAT_MPC_N + 1 assert len(yaw_rate_pts) == LAT_MPC_N + 1 lateral_factor = np.clip(self.factor1 - (self.factor2 * self.v_plan**2), 0.0, np.inf) p = np.column_stack([self.v_plan, lateral_factor]) self.lat_mpc.run(self.x0, p, y_pts, heading_pts, yaw_rate_pts) # init state for next iteration # mpc.u_sol is the desired second derivative of psi given x0 curv state. # with x0[3] = measured_yaw_rate, this would be the actual desired yaw rate. # instead, interpolate x_sol so that x0[3] is the desired yaw rate for lat_control. self.x0[3] = interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1], self.lat_mpc.x_sol[:, 3]) # Check for infeasible MPC solution mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any() t = sec_since_boot() if mpc_nans or self.lat_mpc.solution_status != 0: self.reset_mpc() self.x0[3] = measured_curvature * self.v_ego if t > self.last_cloudlog_t + 5.0: self.last_cloudlog_t = t cloudlog.warning("Lateral mpc - nan: True") if self.lat_mpc.cost > 1e6 or mpc_nans: self.solution_invalid_cnt += 1 else: self.solution_invalid_cnt = 0 def publish(self, sm, pm): plan_solution_valid = self.solution_invalid_cnt < 2 plan_send = messaging.new_message('lateralPlan') plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2']) lateralPlan = plan_send.lateralPlan lateralPlan.modelMonoTime = sm.logMonoTime['modelV2'] lateralPlan.dPathPoints = self.y_pts.tolist() lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist() lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist() lateralPlan.curvatureRates = [float(x/self.v_ego) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0] lateralPlan.mpcSolutionValid = bool(plan_solution_valid) lateralPlan.solverExecutionTime = self.lat_mpc.solve_time if self.debug_mode: lateralPlan.solverCost = self.lat_mpc.cost lateralPlan.solverState = log.LateralPlan.SolverState.new_message() lateralPlan.solverState.x = self.lat_mpc.x_sol.tolist() lateralPlan.solverState.u = self.lat_mpc.u_sol.flatten().tolist() lateralPlan.desire = self.DH.desire lateralPlan.useLaneLines = False lateralPlan.laneChangeState = self.DH.lane_change_state lateralPlan.laneChangeDirection = self.DH.lane_change_direction pm.send('lateralPlan', plan_send)