from __future__ import annotations from google.protobuf.internal.containers import RepeatedCompositeFieldContainer import importlib import numpy as np from tinygrad.tensor import Tensor from tinygrad.helpers import prod, getenv, DEBUG, dtypes from typing import List,Dict from onnx.onnx_pb import AttributeProto, ModelProto, TensorProto, TypeProto try: from onnx.helper import tensor_dtype_to_np_dtype except ImportError: # for onnx < 1.13 from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE tensor_dtype_to_np_dtype = lambda x: TENSOR_TYPE_TO_NP_TYPE[x] # global numpy cache for parameters numpy_cache = {} def safe_numpy(t) -> np.ndarray: if not isinstance(t, Tensor): return t global numpy_cache if t not in numpy_cache: if DEBUG >= 3: print("numpy cache miss", t) tmp = t.numpy() numpy_cache[t] = tmp if len(tmp.shape) else tmp.reshape(1) assert len(numpy_cache[t].shape) > 0 return numpy_cache[t] onnx_ops = importlib.import_module('extra.onnx_ops') ONNXLIMIT = getenv("ONNXLIMIT", -1) def get_run_onnx(onnx_model: ModelProto): def type_parse(type_proto: TypeProto): ret = [] while True: attr = type_proto.WhichOneof('value') if attr == 'tensor_type': if "dim_value" not in getattr(type_proto, attr).shape.dim.__dir__(): return () # variable type, unable to determine shape elif not ret: return tuple([x.dim_value for x in getattr(type_proto, attr).shape.dim]) else: ret.extend([(x.dim_value,) for x in getattr(type_proto, attr).shape.dim]) return tuple(ret) elif attr == 'sequence_type': type_proto = getattr(type_proto, attr).elem_type ret.append(1) elif attr == 'map_type': raise NotImplementedError(f"map_type is not implemented: {type_proto}") elif attr == 'opaque_type': raise NotImplementedError(f"opaque_type is not implemented: {type_proto}") elif attr == 'sparse_tensor_type': raise NotImplementedError(f"sparse_tensor_type is not implemented: {type_proto}") elif attr == 'optional_type': type_proto = getattr(type_proto, attr).elem_type else: raise Exception(f"unknown attr: {attr}, {type_proto}") def buffer_parse(inp: TensorProto) -> Tensor: if inp.data_type in (1,10,6,7): # TODO: this is shared with below if len(inp.float_data) > 0: ret = Tensor(np.array(inp.float_data, dtype=np.float32).reshape(inp.dims), requires_grad=False) elif len(inp.int64_data) > 0: ret = Tensor(np.array(inp.int64_data, dtype=np.int64).reshape(inp.dims), requires_grad=False) elif len(inp.int32_data) > 0: ret = Tensor(np.array(inp.int32_data, dtype=np.int32).reshape(inp.dims), requires_grad=False) else: ret = Tensor(np.frombuffer(inp.raw_data, dtype=tensor_dtype_to_np_dtype(inp.data_type)).reshape(inp.dims).astype(np.float32).copy(), requires_grad=False) else: raise Exception(f"bad data type {inp.name} {inp.dims} {inp.data_type}") return ret def attribute_parse(a: AttributeProto) -> float | int | str | Tensor | tuple[float] | tuple[int]: # TODO: this is not complete, see onnx/onnx_ml_pb2.pyi for a complete list if a.type == AttributeProto.FLOAT: return float(a.f) elif a.type == AttributeProto.INT: return int(a.i) elif a.type == AttributeProto.STRING: return a.s.decode("utf-8") elif a.type == AttributeProto.TENSOR: return buffer_parse(a.t) # TENSOR elif a.type == AttributeProto.FLOATS: return tuple(float(x) for x in a.floats) elif a.type == AttributeProto.INTS: return tuple(int(x) for x in a.ints) elif a.type == AttributeProto.STRINGS: return tuple(x.decode("utf-8") for x in a.strings) elif a.type == AttributeProto.GRAPH: raise Exception(f"graph not implemented: {a.g}") else: raise Exception(f"can't parse {a.type} {a}") def attribute_to_dict(a: RepeatedCompositeFieldContainer[AttributeProto]): return {x.name:attribute_parse(x) for x in a} tensors: Dict[str, Tensor] = {} # get weights and biases for inp in onnx_model.graph.initializer: if len(inp.raw_data) > 0: tensors[inp.name] = buffer_parse(inp) elif len(inp.float_data) > 0: tensors[inp.name] = Tensor(np.array(inp.float_data, dtype=np.float32).reshape(inp.dims), requires_grad=False) elif len(inp.int64_data) > 0: tensors[inp.name] = Tensor(np.array(inp.int64_data, dtype=np.int64).reshape(inp.dims), requires_grad=False) elif len(inp.raw_data) == 0: tensors[inp.name] = Tensor(np.array([], dtype=np.float32), requires_grad=False) else: print(inp.name, inp.dims, inp.data_type, len(inp.raw_data)) print(inp) raise Exception("no data") # preparse the attributes attribute_dict = {} domain = "" for num,n in enumerate(onnx_model.graph.node): attribute_dict[num] = attribute_to_dict(n.attribute) if n.domain: domain = n.domain onnx_model_version = onnx_model.opset_import[0].version def run_onnx(inputs={}, debug=0): debug = getenv("DEBUGONNX") or debug input_tensors: Dict[str,Tensor] = {} intermediate_tensors: Dict[str,Tensor] = {} output_tensor_names = [x.name for x in onnx_model.graph.output] # get inputs for inp in onnx_model.graph.input: if inp.name in tensors: continue shape = type_parse(inp.type) if inp.name in inputs: if isinstance(inputs[inp.name], Tensor): input_tensors[inp.name] = inputs[inp.name] elif isinstance(inputs[inp.name], list): input_tensors[inp.name] = [Tensor(i, requires_grad=False) for i in inputs[inp.name]] elif domain == "ai.onnx.preview.training": # not sure if in real use the domain is "ai.onnx.preview.training" input_tensors[inp.name] = Tensor(inputs[inp.name], requires_grad=True) # TODO there isn't a good way to parse which inp requires_grad, some are manually turned off in optimizer ops else: input_tensors[inp.name] = Tensor(inputs[inp.name], requires_grad=False) if shape: # if only input_tensor is not variable type input_shape = input_tensors[inp.name].shape if isinstance(input_tensors[inp.name], Tensor) else (1, *[i.shape for i in input_tensors[inp.name]]) assert input_shape == shape, f"wrong shape for input {inp.name}, {input_shape} isn't {shape}" else: raise Exception(f"no data for {inp.name} with shape {shape}") def fetch_tensor(x: str): if x in tensors: return tensors[x] if x in intermediate_tensors: return intermediate_tensors[x] if x != str(): return input_tensors[x] return None for num,n in enumerate(onnx_model.graph.node): inp: List[Tensor] = [] if debug >= 3: print("inputs:") for x in n.input: t = fetch_tensor(x) if debug >= 3: print(f"\t{x} - {t}") inp.append(t) opt: Dict = attribute_dict[num] if debug >= 1: print(f"{num}: op {n.op_type} shape {[x.shape if isinstance(x, Tensor) else x for x in inp]} opt {opt}") # some ops live here because they require some local variables if n.op_type == "Split": # have to use n.output for cases when num_outputs is absent axis = opt.get("axis", 0) split = None if len(inp) == 1 else [int(x) for x in safe_numpy(inp[1])] if split is None: split = [inp[0].shape[axis] // len(n.output)] * len(n.output) for i in range(inp[0].shape[axis] % len(n.output)): split[i] += 1 i, ret = 0, [] arg = [(0,x) for x in inp[0].shape] for s in split: arg[axis] = (i,i+s) ret.append(inp[0].shrink(arg=tuple(arg))) i = i+s ret = tuple(ret) elif n.op_type == "Slice": # need to check onnx_model_version if onnx_model_version < 10: axes, ends, starts, steps = list(opt.get("axes", range(inp[0].ndim))), list(opt["ends"]), list(opt["starts"]), [1]*inp[0].ndim else: starts, ends = inp[1:3] axes = safe_numpy(Tensor.arange(inp[0].ndim, dtype=dtypes.int32) if len(inp) <= 3 else inp[3]).tolist() steps = safe_numpy(inp[4]) if len(inp) > 4 else [1]*inp[0].ndim starts, ends = safe_numpy(starts.ceil().cast(dtypes.int32)).tolist(), safe_numpy(ends.ceil().cast(dtypes.int32)).tolist() arg = [(0,x,1) for x in inp[0].shape] for i, axis in enumerate(axes): axis = int(axis) + inp[0].ndim if axis < 0 else int(axis) starts[i], ends[i] = starts[i] + inp[0].shape[axis] if starts[i] < 0 else starts[i], ends[i] + inp[0].shape[axis] if ends[i] < 0 else ends[i] starts[i], ends[i] = max(0, min(starts[i], inp[0].shape[axis])), max(0, min(ends[i], inp[0].shape[axis])) if starts[i] > ends[i] and steps[i] >= 0: steps[i] = -steps[i] arg[axis] = (starts[i], ends[i], steps[i]) new_shape = tuple((s, e) if st > 0 else (e+1, s+1) for s, e, st in arg) if any(s==e for s,e in new_shape): ret = inp[0].shrink(new_shape) else: ret = inp[0].__getitem__(tuple([slice(s,e,st) for s,e,st in arg])) elif n.op_type == "Gradient": # need to call backward on intermediate_tensors assert len(opt["xs"]) == len(inp), f"len(opt['xs']):{len(opt['xs'])}, len(inp):{len(inp)} output and input has to match" y = opt["y"] intermediate_tensors[y].backward() ret = tuple([t.grad for t in inp]) elif hasattr(onnx_ops, n.op_type): fxn = getattr(onnx_ops, n.op_type) if isinstance(fxn, dict): for k in sorted(fxn.keys()): if k <= onnx_model_version: real_fxn = fxn[k] else: real_fxn = fxn ret = real_fxn(*inp, **opt) else: print("UNSUPPORTED", n.op_type, n.input, n.output) raise Exception(f"op_type {n.op_type} not supported") if not isinstance(ret, tuple): ret = (ret, ) assert len(n.output) <= len(ret), f"expected output size must be less than {len(ret)}, it's {n.output}" if debug >= 2: print([x.shape if isinstance(x, Tensor) else None for x in ret]) if debug >= 2: print("outputs:") for i in range(len(n.output)): if debug >= 2: print(f"\t{n.output[i]} - {ret[i]}") intermediate_tensors[n.output[i]] = ret[i] if num == ONNXLIMIT: output_tensor_names = n.output break return {outp:intermediate_tensors[outp] for outp in output_tensor_names} return run_onnx