import math from typing import Optional, Union, Tuple from tinygrad.tensor import Tensor from tinygrad.helpers import prod, all_int class BatchNorm2d: def __init__(self, sz, eps=1e-5, affine=True, track_running_stats=True, momentum=0.1): self.eps, self.track_running_stats, self.momentum = eps, track_running_stats, momentum if affine: self.weight, self.bias = Tensor.ones(sz), Tensor.zeros(sz) else: self.weight, self.bias = None, None self.running_mean, self.running_var = Tensor.zeros(sz, requires_grad=False), Tensor.ones(sz, requires_grad=False) self.num_batches_tracked = Tensor.zeros(1, requires_grad=False) def __call__(self, x:Tensor): if Tensor.training: # This requires two full memory accesses to x # https://github.com/pytorch/pytorch/blob/c618dc13d2aa23625cb0d7ada694137532a4fa33/aten/src/ATen/native/cuda/Normalization.cuh # There's "online" algorithms that fix this, like https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_Online_algorithm batch_mean = x.mean(axis=(0,2,3)) y = (x - batch_mean.reshape(shape=[1, -1, 1, 1])) batch_var = (y*y).mean(axis=(0,2,3)) batch_invstd = batch_var.add(self.eps).pow(-0.5) # NOTE: wow, this is done all throughout training in most PyTorch models if self.track_running_stats: self.running_mean.assign((1 - self.momentum) * self.running_mean + self.momentum * batch_mean.detach()) self.running_var.assign((1 - self.momentum) * self.running_var + self.momentum * prod(y.shape)/(prod(y.shape) - y.shape[1]) * batch_var.detach() ) self.num_batches_tracked += 1 else: batch_mean = self.running_mean # NOTE: this can be precomputed for static inference. we expand it here so it fuses batch_invstd = self.running_var.reshape(1, -1, 1, 1).expand(x.shape).add(self.eps).rsqrt() return x.batchnorm(self.weight, self.bias, batch_mean, batch_invstd) # TODO: these Conv lines are terrible def Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): return Conv2d(in_channels, out_channels, (kernel_size,), stride, padding, dilation, groups, bias) class Conv2d: def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): self.kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else tuple(kernel_size) self.stride, self.padding, self.dilation, self.groups = stride, padding, dilation, groups self.weight = self.initialize_weight(out_channels, in_channels, groups) assert all_int(self.weight.shape), "does not support symbolic shape" bound = 1 / math.sqrt(prod(self.weight.shape[1:])) self.bias = Tensor.uniform(out_channels, low=-bound, high=bound) if bias else None def __call__(self, x:Tensor): return x.conv2d(self.weight, self.bias, padding=self.padding, stride=self.stride, dilation=self.dilation, groups=self.groups) def initialize_weight(self, out_channels, in_channels, groups): return Tensor.kaiming_uniform(out_channels, in_channels//groups, *self.kernel_size, a=math.sqrt(5)) def ConvTranspose1d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, dilation=1, groups=1, bias=True): return ConvTranspose2d(in_channels, out_channels, (kernel_size,), stride, padding, output_padding, dilation, groups, bias) class ConvTranspose2d(Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, dilation=1, groups=1, bias=True): super().__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) self.output_padding = output_padding def __call__(self, x:Tensor): return x.conv_transpose2d(self.weight, self.bias, padding=self.padding, output_padding=self.output_padding, stride=self.stride, dilation=self.dilation, groups=self.groups) def initialize_weight(self, out_channels, in_channels, groups): return Tensor.kaiming_uniform(in_channels, out_channels//groups, *self.kernel_size, a=math.sqrt(5)) class Linear: def __init__(self, in_features, out_features, bias=True): self.weight = Tensor.kaiming_uniform(out_features, in_features, a=math.sqrt(5)) # TODO: remove this once we can represent Tensor with int shape in typing assert isinstance(self.weight.shape[1], int), "does not support symbolic shape" bound = 1 / math.sqrt(self.weight.shape[1]) self.bias = Tensor.uniform(out_features, low=-bound, high=bound) if bias else None def __call__(self, x:Tensor): return x.linear(self.weight.transpose(), self.bias) class GroupNorm: def __init__(self, num_groups:int, num_channels:int, eps:float=1e-5, affine:bool=True): self.num_groups, self.num_channels, self.eps = num_groups, num_channels, eps self.weight: Optional[Tensor] = Tensor.ones(num_channels) if affine else None self.bias: Optional[Tensor] = Tensor.zeros(num_channels) if affine else None def __call__(self, x:Tensor): # reshape for layernorm to work as group norm # subtract mean and divide stddev x = x.reshape(x.shape[0], self.num_groups, -1).layernorm(eps=self.eps).reshape(x.shape) if self.weight is None or self.bias is None: return x # elementwise_affine on channels return x * self.weight.reshape(1, -1, *[1] * (len(x.shape)-2)) + self.bias.reshape(1, -1, *[1] * (len(x.shape)-2)) class InstanceNorm: def __init__(self, num_features:int, eps:float=1e-5, affine:bool=True): self.num_features, self.eps = num_features, eps self.weight: Optional[Tensor] = Tensor.ones(num_features) if affine else None self.bias: Optional[Tensor] = Tensor.zeros(num_features) if affine else None def __call__(self, x:Tensor): x = x.reshape(x.shape[0], self.num_features, -1).layernorm(eps=self.eps).reshape(x.shape) if self.weight is None or self.bias is None: return x return x * self.weight.reshape(1, -1, *[1] * (len(x.shape)-2)) + self.bias.reshape(1, -1, *[1] * (len(x.shape)-2)) class LayerNorm: def __init__(self, normalized_shape:Union[int, Tuple[int, ...]], eps:float=1e-5, elementwise_affine:bool=True): self.normalized_shape = (normalized_shape,) if isinstance(normalized_shape, int) else tuple(normalized_shape) self.axis, self.eps, self.elementwise_affine = tuple(-1-i for i in range(len(self.normalized_shape))), eps, elementwise_affine self.weight, self.bias = (Tensor.ones(*self.normalized_shape), Tensor.zeros(*self.normalized_shape)) if elementwise_affine else (None, None) def __call__(self, x:Tensor): assert self.normalized_shape == x.shape[-len(self.normalized_shape):], f"last dimensions of {x.shape} must match {self.normalized_shape}" x = x.layernorm(eps=self.eps, axis=self.axis) if not self.elementwise_affine: return x return x * self.weight + self.bias class LayerNorm2d(LayerNorm): def __call__(self, x): return super().__call__(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) class Embedding: def __init__(self, vocab_size:int, embed_size:int): self.vocab_size = vocab_size self.weight = Tensor.glorot_uniform(vocab_size, embed_size) def __call__(self, idx:Tensor) -> Tensor: if not hasattr(self, 'vocab_counter'): self.vocab_counter = Tensor.arange(self.vocab_size, requires_grad=False).reshape(1, 1, self.vocab_size) return (self.vocab_counter == idx.unsqueeze(2)).expand(*idx.shape, self.vocab_size) @ self.weight