from typing import Tuple, Dict, List, Optional from tinygrad.dtype import DType from tinygrad.renderer import ProgramSpec from tinygrad.tensor import Device, Tensor from tinygrad.engine.jit import TinyJit from tinygrad.nn.state import get_state_dict from tinygrad.helpers import Context from tinygrad.dtype import dtypes import json EXPORT_SUPPORTED_DEVICE = ["WEBGPU", "CLANG", "CUDA", "GPU"] def compile_net(run:TinyJit, special_names:Dict[int,str]) -> Tuple[Dict[str,str],List[Tuple[str,List[str],List[int]]],Dict[str,Tuple[int,DType,int]],Dict[str,Tensor]]: functions, bufs, bufs_to_save, statements, bufnum = {}, {}, {}, [], 0 for ji in run.jit_cache: fxn: ProgramSpec = ji.prg.p functions[fxn.function_name] = fxn.src # NOTE: this assumes all with the same name are the same cargs = [] for i,arg in enumerate(ji.bufs): key = id(arg) if key not in bufs: if key in special_names: bufs[key] = (special_names[key], arg.size*arg.dtype.itemsize, arg.dtype, key) else: bufs[key] = (f"buf_{bufnum}", arg.size*arg.dtype.itemsize, arg.dtype, key) bufnum += 1 if i > 0: bufs_to_save[bufs[key][0]] = arg # if first usage of a buffer is not an output, and it's not a special name cargs.append(bufs[key][0]) statements.append((fxn.function_name, cargs, fxn.global_size, fxn.local_size)) return functions, statements, {name:(size, dtype, key) for (name,size,dtype,key) in bufs.values()}, bufs_to_save def jit_model(model, *args) -> Tuple[TinyJit,Dict[int,str]]: assert hasattr(model, "forward") or callable(model), "model needs a forward function" @TinyJit def run(*x): out = model.forward(*x) if hasattr(model, "forward") else model(*x) assert isinstance(out, tuple) or isinstance(out, list) or isinstance(out, Tensor), "model output must be a Tensor, tuple, or a list of Tensors for export" out = [out] if isinstance(out, Tensor) else out return [o.realize() for o in out] # twice to run the JIT for _ in range(2): the_output = run(*args) special_names = {} # hack to put the inputs back for (j,i),idx in run.input_replace.items(): realized_input = args[idx].lazydata.base.realized run.jit_cache[j].bufs[i] = realized_input special_names[id(realized_input)] = f'input{idx}' # TODO: fetch this from the jit in self.input_replace and self.ret (hint: use get_parameters on self.ret) for i, output in enumerate(the_output): special_names[id(output.lazydata.base.realized)] = f'output{i}' return run, special_names def export_model_clang(functions:Dict[str,str], statements:Dict[str,Tuple[str,int,int]], bufs:Dict[str,Tuple[str,int,int]], bufs_to_save:Dict[str,Tensor], input_names:List[str], output_names:List[str]) -> str: cprog = ["#include "] for name,cl in bufs_to_save.items(): weight = ''.join(["\\x%02X"%x for x in bytes(cl._buf)]) cprog.append(f"unsigned char {name}_data[] = \"{weight}\";") inputs = ", ".join([f'float* {input}' for input in input_names]) outputs = ", ".join([f'float* {output}' for output in output_names]) cprog += [f"float {name}[{len}];" if name not in bufs_to_save else f"float *{name} = (float *){name}_data;" for name,(len,dtype,_key) in bufs.items() if name not in ['input', 'outputs']] cprog += list(functions.values()) cprog += [f"void net({inputs}, {outputs}) {{"] + [f"{name}({', '.join(args)});" for (name, args, _global_size, _local_size) in statements] + ["}"] return '\n'.join(cprog) def dtype_to_js_type(dtype: DType) -> str: return f"{'Uint' if dtype in dtypes.uints else 'Int' if (dtype in dtypes.sints or dtype == dtypes.bool) else 'Float'}{8*dtype.itemsize}Array" def export_model_webgpu(functions, statements, bufs, weight_names, input_names, output_names, model_name) -> Tuple[str,int,int]: exported_name = "model" if model_name == None else model_name kernel_code = '\n\n'.join([f"const {key} = `{code.replace(key, 'main')}`;" for key, code in functions.items()]) kernel_names = ', '.join([name for (name, _, _, _) in statements]) create_bind_group_layouts = ",".join([ "device.createBindGroupLayout({{entries: [{{binding: 0, visibility: GPUShaderStage.COMPUTE, buffer: {{ type: 'uniform' }}}}, {}]}})".format( ",".join([f"{{binding: {argIdx+1}, visibility: GPUShaderStage.COMPUTE, buffer: {{ type: 'storage' }} }}" for argIdx, _ in enumerate(args)]) ) for _, (_, args, _, _) in enumerate(statements) ]) layouts = f"const layouts=[{create_bind_group_layouts}]" kernel_calls = '\n '.join([f"addComputePass(device, commandEncoder, pipelines[{i}], layouts[{i}], infinityBuf, [{', '.join(args)}], {global_size});" for i, (_name, args, global_size, _local_size) in enumerate(statements) ]) _bufs = '\n '.join([f"const {name} = " + (f"createEmptyBuf(device, {size});" if _key not in weight_names else f"createWeightBuf(device, {size}, getTensorBuffer(safetensor, metadata['{weight_names[_key]}']))") + ";" for name,(size,dtype,_key) in bufs.items()]) gpu_write_bufs = '\n '.join([f"const gpuWriteBuffer{i} = device.createBuffer({{size:{input_name}.size, usage: GPUBufferUsage.COPY_SRC | GPUBufferUsage.MAP_WRITE }});" for i,input_name in enumerate(input_names)]) input_buffer_types = [dtype_to_js_type(bufs[inp_name][1]) for inp_name in input_names] output_buffer_types = [dtype_to_js_type(bufs[out_name][1]) for out_name in output_names] input_writers = '\n '.join([f"await gpuWriteBuffer{i}.mapAsync(GPUMapMode.WRITE);\n new {input_buffer_types[i]}(gpuWriteBuffer{i}.getMappedRange()).set(" + f'_{inp_name});' + f"\n gpuWriteBuffer{i}.unmap();\n commandEncoder.copyBufferToBuffer(gpuWriteBuffer{i}, 0, {inp_name}, 0, gpuWriteBuffer{i}.size);" for i,inp_name in enumerate(input_names)]) gpu_read_bufs = '\n '.join([f"const gpuReadBuffer{i} = device.createBuffer({{size:{output_name}.size, usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ }});" for i,output_name in enumerate(output_names)]) outbuf_copies = '\n '.join([f"commandEncoder.copyBufferToBuffer({output_name}, 0, gpuReadBuffer{i}, 0, output{i}.size);" for i,output_name in enumerate(output_names)]) output_readers = '\n '.join([f"await gpuReadBuffer{i}.mapAsync(GPUMapMode.READ);\n const resultBuffer{i} = new {output_buffer_types[i]}(gpuReadBuffer{i}.size/{bufs[output_names[i]][1].itemsize});\n resultBuffer{i}.set(new {output_buffer_types[i]}(gpuReadBuffer{i}.getMappedRange()));\n gpuReadBuffer{i}.unmap();" for i in range(len(output_names))]) output_return = '[{}]'.format(",".join([f'resultBuffer{i}' for i in range(len(output_names))])) return f""" const {exported_name} = (() => {{ const getTensorBuffer = (safetensorBuffer, tensorMetadata) => {{ return safetensorBuffer.subarray(...tensorMetadata.data_offsets); }}; const getTensorMetadata = (safetensorBuffer) => {{ const metadataLength = Number(new DataView(safetensorBuffer.buffer).getBigUint64(0, true)); const metadata = JSON.parse(new TextDecoder("utf8").decode(safetensorBuffer.subarray(8, 8 + metadataLength))); return Object.fromEntries(Object.entries(metadata).filter(([k, v]) => k !== "__metadata__").map(([k, v]) => [k, {{...v, data_offsets: v.data_offsets.map(x => 8 + metadataLength + x)}}])); }}; const createEmptyBuf = (device, size) => {{ return device.createBuffer({{size, usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST }}); }}; const createInfinityUniformBuf = (device) => {{ const size = 4; const buf = device.createBuffer({{ mappedAtCreation: true, size, usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST }}); new Float32Array(buf.getMappedRange())[0] = Infinity; buf.unmap(); return buf; }}; const createWeightBuf = (device, size, data) => {{ const buf = device.createBuffer({{ mappedAtCreation: true, size, usage: GPUBufferUsage.STORAGE }}); new Uint8Array(buf.getMappedRange()).set(data); buf.unmap(); return buf; }}; const addComputePass = (device, commandEncoder, pipeline, layout, infinityUniformBuf, bufs, workgroup) => {{ const bindGroup = device.createBindGroup({{ layout: layout, entries: [ {{ binding: 0, resource: {{ buffer: infinityUniformBuf }} }}, ...bufs.map((buffer, index) => ({{ binding: index + 1, resource: {{ buffer }} }})) ] }}); const passEncoder = commandEncoder.beginComputePass(); passEncoder.setPipeline(pipeline); passEncoder.setBindGroup(0, bindGroup); passEncoder.dispatchWorkgroups(...workgroup); passEncoder.end(); }}; {kernel_code} const setupNet = async (device, safetensor) => {{ const metadata = getTensorMetadata(safetensor); const infinityBuf = createInfinityUniformBuf(device); {layouts} {_bufs} {gpu_write_bufs} {gpu_read_bufs} const kernels = [{kernel_names}]; const pipelines = await Promise.all(kernels.map(async (name, i) => {{ return await device.createComputePipelineAsync({{ layout: device.createPipelineLayout({{ bindGroupLayouts: [layouts[i]], }}), compute: {{ module: device.createShaderModule({{ code: name, }}), entryPoint: "main", }}, }}); }})) return async ({",".join([f"_{input_name}" for input_name in input_names])}) => {{ const commandEncoder = device.createCommandEncoder(); {input_writers} {kernel_calls} {outbuf_copies} const gpuCommands = commandEncoder.finish(); device.queue.submit([gpuCommands]); {output_readers} return {output_return}; }} }} const load = async (device, weight_path) => {{ return await fetch(weight_path).then(x => x.arrayBuffer()).then(x => setupNet(device, new Uint8Array(x))); }} return {{ load }}; }})(); export default {exported_name}; """ def export_model(model, target:str, *inputs, model_name: Optional[str] = None): assert Device.DEFAULT in EXPORT_SUPPORTED_DEVICE, "only WEBGPU, CLANG, CUDA, GPU, METAL are supported" with Context(JIT=2): run,special_names = jit_model(model, *inputs) functions, statements, bufs, bufs_to_save = compile_net(run, special_names) state = get_state_dict(model) weight_names = {id(x.lazydata.base.realized): name for name, x in state.items()} input_names = [name for _,name in special_names.items() if "input" in name] output_names = [name for _,name in special_names.items() if "output" in name] prg = "" if target == "clang": prg = export_model_clang(functions, statements, bufs, bufs_to_save, input_names, output_names) elif target == "webgpu": prg = export_model_webgpu(functions, statements, bufs, weight_names, input_names, output_names, model_name) else: prg = json.dumps({ "backend": Device.DEFAULT, "inputs": [{ "size": bufs[name][0], "dtype": bufs[name][1].name } for name in input_names], "outputs": [{ "size": bufs[name][0], "dtype": bufs[name][1].name } for name in output_names], "functions": functions, "statements": [{ "kernel": kernel, "args": args, "global_size": global_size, "local_size": local_size } for (kernel, args, global_size, local_size) in statements], "buffers": { name: { "size": size, "dtype": dtype.name, "id": weight_names[_key] if _key in weight_names else "" } for name, (size,dtype,_key) in bufs.items() if name not in ["input", "outputs"] } }) return prg, {input:bufs[input][0] for input in input_names}, {output:bufs[output][0] for output in output_names}, state