import csv, pathlib, time, numpy as np from os import getenv import torch torch.set_num_threads(1) import onnx from onnx.helper import tensor_dtype_to_np_dtype import onnxruntime as ort from onnx2torch import convert from extra.onnx import get_run_onnx from tinygrad.helpers import OSX, DEBUG, fetch from tinygrad import Tensor, Device MODELS = { "resnet50": "https://github.com/onnx/models/raw/main/validated/vision/classification/resnet/model/resnet50-caffe2-v1-9.onnx", "openpilot": "https://github.com/commaai/openpilot/raw/v0.9.4/selfdrive/modeld/models/supercombo.onnx", "efficientnet": "https://github.com/onnx/models/raw/main/validated/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx", "shufflenet": "https://github.com/onnx/models/raw/main/validated/vision/classification/shufflenet/model/shufflenet-9.onnx", "commavq": "https://huggingface.co/commaai/commavq-gpt2m/resolve/main/gpt2m.onnx", "dm": "https://github.com/commaai/openpilot/raw/ba7f840a06dbc8ae3c45b3b4976c88a21895aed0/selfdrive/modeld/models/dmonitoring_model.onnx", # broken in torch MPS # "zfnet": "https://github.com/onnx/models/raw/main/archive/vision/classification/zfnet-512/model/zfnet512-9.onnx", # TypeError: BatchNormalization() got an unexpected keyword argument 'is_test' # "densenet": "https://github.com/onnx/models/raw/main/archive/vision/classification/densenet-121/model/densenet-3.onnx", # AssertionError: only onnx version >= 10 supported for slice # "bert": "https://github.com/onnx/models/raw/main/archive/text/machine_comprehension/bert-squad/model/bertsquad-8.onnx", # really slow # "resnet18": "https://github.com/onnx/models/raw/main/archive/vision/classification/resnet/model/resnet18-v2-7.onnx", } CSV = {} open_csv = None def benchmark(mnm, nm, fxn): tms = [] for _ in range(3): st = time.perf_counter_ns() ret = fxn() tms.append(time.perf_counter_ns() - st) print(f"{mnm:15s} {nm:25s} {min(tms)*1e-6:7.2f} ms") CSV[nm] = min(tms)*1e-6 return min(tms), ret #BASE = pathlib.Path(__file__).parents[2] / "weights" / "onnx" BASE = pathlib.Path("/tmp/onnx") def benchmark_model(m, devices, validate_outs=False): torch.manual_seed(1) global open_csv, CSV CSV = {"model": m} fn = fetch(MODELS[m]) onnx_model = onnx.load(fn) output_names = [out.name for out in onnx_model.graph.output] excluded = {inp.name for inp in onnx_model.graph.initializer} input_shapes = {inp.name:tuple(x.dim_value if x.dim_value != 0 else 1 for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input if inp.name not in excluded} # noqa: E501 input_types = {inp.name: tensor_dtype_to_np_dtype(inp.type.tensor_type.elem_type) for inp in onnx_model.graph.input if inp.name not in excluded} #input_types = {k:v if v!=np.float16 else np.float32 for k,v in input_types.items()} # cast np_inputs = {k:torch.randn(shp).numpy().astype(input_types[k]) for k,shp in input_shapes.items()} assert len(input_shapes) < 30, f"too many input shapes {len(input_shapes)}" # print input names if DEBUG >= 2: print([inp.name for inp in onnx_model.graph.input if inp.name not in excluded]) for device in devices: try: Device.DEFAULT = device inputs = {k:Tensor(inp) for k,inp in np_inputs.items()} tinygrad_model = get_run_onnx(onnx_model) benchmark(m, f"tinygrad_{device.lower()}_jitless", lambda: {k:v.numpy() for k,v in tinygrad_model(inputs).items()}) from tinygrad.engine.jit import TinyJit tinygrad_jitted_model = TinyJit(lambda **kwargs: {k:v.realize() for k,v in tinygrad_model(kwargs).items()}) for _ in range(3): {k:v.numpy() for k,v in tinygrad_jitted_model(**inputs).items()} benchmark(m, f"tinygrad_{device.lower()}_jit", lambda: {k:v.numpy() for k,v in tinygrad_jitted_model(**inputs).items()}) # noqa: F821 del inputs, tinygrad_model, tinygrad_jitted_model except RuntimeError as e: # TODO: we don't run the dm model on METAL for now if Device.DEFAULT == "METAL": assert "buffer count limit" in str(e) return else: raise e # convert model to torch try: torch_model = convert(onnx_model) except Exception as e: # model conversion failed print(f"{m:16s}onnx2torch {type(e).__name__:>25}") else: torch_inputs = [torch.tensor(x) for x in np_inputs.values()] try: benchmark(m, "torch_cpu", lambda: torch_model(*torch_inputs)) except Exception as e: print(f"{m:16s}torch_cpu {type(e).__name__:>25}") torch_device = "mps" if OSX else "cuda" torch_mps_model = torch_model.to(torch_device) torch_mps_inputs = [x.to(torch_device) for x in torch_inputs] try: benchmark(m, f"torch_{torch_device}", lambda: torch_mps_model(*torch_mps_inputs)) except Exception as e: print(f"{m:16s}torch_{torch_device} {type(e).__name__:>25}") # bench onnxruntime ort_options = ort.SessionOptions() ort_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL ort_options.log_severity_level = 3 # no warnings for backend in ["CPU", "CUDA" if not OSX else "CoreML"]: # https://onnxruntime.ai/docs/execution-providers/ provider = backend+"ExecutionProvider" if provider not in ort.get_available_providers(): continue ort_sess = ort.InferenceSession(str(fn), ort_options, [provider]) try: benchmark(m, f"onnxruntime_{backend.lower()}", lambda: ort_sess.run(output_names, np_inputs)) except Exception as e: print(f"{m:16s}onnxruntime_{backend.lower()} {type(e).__name__:>25}") del ort_sess if validate_outs: for device in devices: rtol, atol = 2e-3, 2e-3 # tolerance for fp16 models Device.DEFAULT = device inputs = {k:Tensor(inp) for k,inp in np_inputs.items()} tinygrad_model = get_run_onnx(onnx_model) tinygrad_out = tinygrad_model(inputs) ort_sess = ort.InferenceSession(str(fn), ort_options, ["CPUExecutionProvider"]) onnx_out = ort_sess.run(output_names, np_inputs) onnx_out = dict([*list(zip(output_names, onnx_out))]) assert_allclose(tinygrad_out, onnx_out, rtol=rtol, atol=atol) print(f"{m:16s}outputs validated on {device=} with rtol={rtol:.1e}, atol={atol:.1e}") if open_csv is None: open_csv = csv.DictWriter(open('onnx_inference_speed.csv', 'w', newline=''), fieldnames=list(CSV.keys())) open_csv.writeheader() open_csv.writerow(CSV) def assert_allclose(tiny_out:dict, onnx_out:dict, rtol=1e-5, atol=1e-5): assert len(tiny_out) == len(onnx_out) and tiny_out.keys() == onnx_out.keys() for k in tiny_out.keys(): tiny_v, onnx_v = tiny_out[k], onnx_out[k] if tiny_v is None: assert tiny_v == onnx_v else: np.testing.assert_allclose(tiny_v.numpy(), onnx_v, rtol=rtol, atol=atol, err_msg=f"For tensor '{k}' in {tiny_out.keys()}") if __name__ == "__main__": devices = [Device.DEFAULT] if getenv("NOCLANG") else [Device.DEFAULT, "CLANG"] if getenv("MODEL", "") != "": benchmark_model(getenv("MODEL", ""), devices, True) else: for m in MODELS: benchmark_model(m, devices, True)