// ***************************** Interrupt handlers ***************************** void uart_tx_ring(uart_ring *q){ ENTER_CRITICAL(); // Send out next byte of TX buffer if (q->w_ptr_tx != q->r_ptr_tx) { // Only send if transmit register is empty (aka last byte has been sent) if ((q->uart->SR & USART_SR_TXE) != 0) { q->uart->DR = q->elems_tx[q->r_ptr_tx]; // This clears TXE q->r_ptr_tx = (q->r_ptr_tx + 1U) % q->tx_fifo_size; } // Enable TXE interrupt if there is still data to be sent if(q->r_ptr_tx != q->w_ptr_tx){ q->uart->CR1 |= USART_CR1_TXEIE; } else { q->uart->CR1 &= ~USART_CR1_TXEIE; } } EXIT_CRITICAL(); } void uart_rx_ring(uart_ring *q){ // Do not read out directly if DMA enabled if (q->dma_rx == false) { ENTER_CRITICAL(); // Read out RX buffer uint8_t c = q->uart->DR; // This read after reading SR clears a bunch of interrupts uint16_t next_w_ptr = (q->w_ptr_rx + 1U) % q->rx_fifo_size; if ((next_w_ptr == q->r_ptr_rx) && q->overwrite) { // overwrite mode: drop oldest byte q->r_ptr_rx = (q->r_ptr_rx + 1U) % q->rx_fifo_size; } // Do not overwrite buffer data if (next_w_ptr != q->r_ptr_rx) { q->elems_rx[q->w_ptr_rx] = c; q->w_ptr_rx = next_w_ptr; if (q->callback != NULL) { q->callback(q); } } EXIT_CRITICAL(); } } void uart_send_break(uart_ring *u) { while ((u->uart->CR1 & USART_CR1_SBK) != 0); u->uart->CR1 |= USART_CR1_SBK; } // This function should be called on: // * Half-transfer DMA interrupt // * Full-transfer DMA interrupt // * UART IDLE detection uint32_t prev_w_index = 0; void dma_pointer_handler(uart_ring *q, uint32_t dma_ndtr) { ENTER_CRITICAL(); uint32_t w_index = (q->rx_fifo_size - dma_ndtr); // Check for new data if (w_index != prev_w_index){ // Check for overflow if ( ((prev_w_index < q->r_ptr_rx) && (q->r_ptr_rx <= w_index)) || // No rollover ((w_index < prev_w_index) && ((q->r_ptr_rx <= w_index) || (prev_w_index < q->r_ptr_rx))) // Rollover ){ // We lost data. Set the new read pointer to the oldest byte still available q->r_ptr_rx = (w_index + 1U) % q->rx_fifo_size; } // Set write pointer q->w_ptr_rx = w_index; } prev_w_index = w_index; EXIT_CRITICAL(); } // This read after reading SR clears all error interrupts. We don't want compiler warnings, nor optimizations #define UART_READ_DR(uart) volatile uint8_t t = (uart)->DR; UNUSED(t); void uart_interrupt_handler(uart_ring *q) { ENTER_CRITICAL(); // Read UART status. This is also the first step necessary in clearing most interrupts uint32_t status = q->uart->SR; // If RXNE is set, perform a read. This clears RXNE, ORE, IDLE, NF and FE if((status & USART_SR_RXNE) != 0U){ uart_rx_ring(q); } // Detect errors and clear them uint32_t err = (status & USART_SR_ORE) | (status & USART_SR_NE) | (status & USART_SR_FE) | (status & USART_SR_PE); if(err != 0U){ #ifdef DEBUG_UART print("Encountered UART error: "); puth(err); print("\n"); #endif UART_READ_DR(q->uart) } // Send if necessary uart_tx_ring(q); // Run DMA pointer handler if the line is idle if(q->dma_rx && (status & USART_SR_IDLE)){ // Reset IDLE flag UART_READ_DR(q->uart) if(q == &uart_ring_gps){ dma_pointer_handler(&uart_ring_gps, DMA2_Stream5->NDTR); } else { #ifdef DEBUG_UART print("No IDLE dma_pointer_handler implemented for this UART."); #endif } } EXIT_CRITICAL(); } void USART1_IRQ_Handler(void) { uart_interrupt_handler(&uart_ring_gps); } void USART2_IRQ_Handler(void) { uart_interrupt_handler(&uart_ring_debug); } void USART3_IRQ_Handler(void) { uart_interrupt_handler(&uart_ring_lin2); } void UART5_IRQ_Handler(void) { uart_interrupt_handler(&uart_ring_lin1); } void DMA2_Stream5_IRQ_Handler(void) { ENTER_CRITICAL(); // Handle errors if((DMA2->HISR & DMA_HISR_TEIF5) || (DMA2->HISR & DMA_HISR_DMEIF5) || (DMA2->HISR & DMA_HISR_FEIF5)){ #ifdef DEBUG_UART print("Encountered UART DMA error. Clearing and restarting DMA...\n"); #endif // Clear flags DMA2->HIFCR = DMA_HIFCR_CTEIF5 | DMA_HIFCR_CDMEIF5 | DMA_HIFCR_CFEIF5; // Re-enable the DMA if necessary DMA2_Stream5->CR |= DMA_SxCR_EN; } // Re-calculate write pointer and reset flags dma_pointer_handler(&uart_ring_gps, DMA2_Stream5->NDTR); DMA2->HIFCR = DMA_HIFCR_CTCIF5 | DMA_HIFCR_CHTIF5; EXIT_CRITICAL(); } // ***************************** Hardware setup ***************************** void dma_rx_init(uart_ring *q) { // Initialization is UART-dependent if(q == &uart_ring_gps){ // DMA2, stream 5, channel 4 // Disable FIFO mode (enable direct) DMA2_Stream5->FCR &= ~DMA_SxFCR_DMDIS; // Setup addresses DMA2_Stream5->PAR = (uint32_t)&(USART1->DR); // Source DMA2_Stream5->M0AR = (uint32_t)q->elems_rx; // Destination DMA2_Stream5->NDTR = q->rx_fifo_size; // Number of bytes to copy // Circular, Increment memory, byte size, periph -> memory, enable // Transfer complete, half transfer, transfer error and direct mode error interrupt enable DMA2_Stream5->CR = DMA_SxCR_CHSEL_2 | DMA_SxCR_MINC | DMA_SxCR_CIRC | DMA_SxCR_HTIE | DMA_SxCR_TCIE | DMA_SxCR_TEIE | DMA_SxCR_DMEIE | DMA_SxCR_EN; // Enable DMA receiver in UART q->uart->CR3 |= USART_CR3_DMAR; // Enable UART IDLE interrupt q->uart->CR1 |= USART_CR1_IDLEIE; // Enable interrupt NVIC_EnableIRQ(DMA2_Stream5_IRQn); } else { print("Tried to initialize RX DMA for an unsupported UART\n"); } } #define __DIV(_PCLK_, _BAUD_) (((_PCLK_) * 25U) / (4U * (_BAUD_))) #define __DIVMANT(_PCLK_, _BAUD_) (__DIV((_PCLK_), (_BAUD_)) / 100U) #define __DIVFRAQ(_PCLK_, _BAUD_) ((((__DIV((_PCLK_), (_BAUD_)) - (__DIVMANT((_PCLK_), (_BAUD_)) * 100U)) * 16U) + 50U) / 100U) #define __USART_BRR(_PCLK_, _BAUD_) ((__DIVMANT((_PCLK_), (_BAUD_)) << 4) | (__DIVFRAQ((_PCLK_), (_BAUD_)) & 0x0FU)) void uart_set_baud(USART_TypeDef *u, unsigned int baud) { if (u == USART1) { // USART1 is on APB2 u->BRR = __USART_BRR(48000000U, baud); } else { u->BRR = __USART_BRR(24000000U, baud); } } void uart_init(uart_ring *q, int baud) { if(q->uart != NULL){ // Register interrupts (max data rate: 115200 baud) if(q->uart == USART1){ REGISTER_INTERRUPT(USART1_IRQn, USART1_IRQ_Handler, 150000U, FAULT_INTERRUPT_RATE_UART_1) } else if (q->uart == USART2){ REGISTER_INTERRUPT(USART2_IRQn, USART2_IRQ_Handler, 150000U, FAULT_INTERRUPT_RATE_UART_2) } else if (q->uart == USART3){ REGISTER_INTERRUPT(USART3_IRQn, USART3_IRQ_Handler, 150000U, FAULT_INTERRUPT_RATE_UART_3) } else if (q->uart == UART5){ REGISTER_INTERRUPT(UART5_IRQn, UART5_IRQ_Handler, 150000U, FAULT_INTERRUPT_RATE_UART_5) } else { // UART not used. Skip registering interrupts } if(q->dma_rx){ REGISTER_INTERRUPT(DMA2_Stream5_IRQn, DMA2_Stream5_IRQ_Handler, 100U, FAULT_INTERRUPT_RATE_UART_DMA) // Called twice per buffer } // Set baud and enable peripheral with TX and RX mode uart_set_baud(q->uart, baud); q->uart->CR1 = USART_CR1_UE | USART_CR1_TE | USART_CR1_RE; if ((q->uart == USART2) || (q->uart == USART3) || (q->uart == UART5)) { q->uart->CR1 |= USART_CR1_RXNEIE; } // Enable UART interrupts if(q->uart == USART1){ NVIC_EnableIRQ(USART1_IRQn); } else if (q->uart == USART2){ NVIC_EnableIRQ(USART2_IRQn); } else if (q->uart == USART3){ NVIC_EnableIRQ(USART3_IRQn); } else if (q->uart == UART5){ NVIC_EnableIRQ(UART5_IRQn); } else { // UART not used. Skip enabling interrupts } // Initialise RX DMA if used if(q->dma_rx){ dma_rx_init(q); } } }