void dma_pointer_handler(uart_ring *q, uint32_t dma_ndtr) { UNUSED(q); UNUSED(dma_ndtr); } void dma_rx_init(uart_ring *q) { UNUSED(q); } #define __DIV(_PCLK_, _BAUD_) (((_PCLK_) * 25U) / (4U * (_BAUD_))) #define __DIVMANT(_PCLK_, _BAUD_) (__DIV((_PCLK_), (_BAUD_)) / 100U) #define __DIVFRAQ(_PCLK_, _BAUD_) ((((__DIV((_PCLK_), (_BAUD_)) - (__DIVMANT((_PCLK_), (_BAUD_)) * 100U)) * 16U) + 50U) / 100U) #define __USART_BRR(_PCLK_, _BAUD_) ((__DIVMANT((_PCLK_), (_BAUD_)) << 4) | (__DIVFRAQ((_PCLK_), (_BAUD_)) & 0x0FU)) void uart_rx_ring(uart_ring *q){ // Do not read out directly if DMA enabled if (q->dma_rx == false) { ENTER_CRITICAL(); // Read out RX buffer uint8_t c = q->uart->RDR; // This read after reading SR clears a bunch of interrupts uint16_t next_w_ptr = (q->w_ptr_rx + 1U) % q->rx_fifo_size; if ((next_w_ptr == q->r_ptr_rx) && q->overwrite) { // overwrite mode: drop oldest byte q->r_ptr_rx = (q->r_ptr_rx + 1U) % q->rx_fifo_size; } // Do not overwrite buffer data if (next_w_ptr != q->r_ptr_rx) { q->elems_rx[q->w_ptr_rx] = c; q->w_ptr_rx = next_w_ptr; if (q->callback != NULL) { q->callback(q); } } EXIT_CRITICAL(); } } void uart_tx_ring(uart_ring *q){ ENTER_CRITICAL(); // Send out next byte of TX buffer if (q->w_ptr_tx != q->r_ptr_tx) { // Only send if transmit register is empty (aka last byte has been sent) if ((q->uart->ISR & USART_ISR_TXE_TXFNF) != 0) { q->uart->TDR = q->elems_tx[q->r_ptr_tx]; // This clears TXE q->r_ptr_tx = (q->r_ptr_tx + 1U) % q->tx_fifo_size; } // Enable TXE interrupt if there is still data to be sent if(q->r_ptr_tx != q->w_ptr_tx){ q->uart->CR1 |= USART_CR1_TXEIE; } else { q->uart->CR1 &= ~USART_CR1_TXEIE; } } EXIT_CRITICAL(); } void uart_set_baud(USART_TypeDef *u, unsigned int baud) { // UART7 is connected to APB1 at 60MHz u->BRR = 60000000U / baud; } // This read after reading ISR clears all error interrupts. We don't want compiler warnings, nor optimizations #define UART_READ_RDR(uart) volatile uint8_t t = (uart)->RDR; UNUSED(t); void uart_interrupt_handler(uart_ring *q) { ENTER_CRITICAL(); // Read UART status. This is also the first step necessary in clearing most interrupts uint32_t status = q->uart->ISR; // If RXFNE is set, perform a read. This clears RXFNE, ORE, IDLE, NF and FE if((status & USART_ISR_RXNE_RXFNE) != 0U){ uart_rx_ring(q); } // Detect errors and clear them uint32_t err = (status & USART_ISR_ORE) | (status & USART_ISR_NE) | (status & USART_ISR_FE) | (status & USART_ISR_PE); if(err != 0U){ #ifdef DEBUG_UART print("Encountered UART error: "); puth(err); print("\n"); #endif UART_READ_RDR(q->uart) } if ((err & USART_ISR_ORE) != 0U) { q->uart->ICR |= USART_ICR_ORECF; } else if ((err & USART_ISR_NE) != 0U) { q->uart->ICR |= USART_ICR_NECF; } else if ((err & USART_ISR_FE) != 0U) { q->uart->ICR |= USART_ICR_FECF; } else if ((err & USART_ISR_PE) != 0U) { q->uart->ICR |= USART_ICR_PECF; } else {} // Send if necessary uart_tx_ring(q); // Run DMA pointer handler if the line is idle if(q->dma_rx && (status & USART_ISR_IDLE)){ // Reset IDLE flag UART_READ_RDR(q->uart) #ifdef DEBUG_UART print("No IDLE dma_pointer_handler implemented for this UART."); #endif } EXIT_CRITICAL(); } void UART7_IRQ_Handler(void) { uart_interrupt_handler(&uart_ring_som_debug); } void uart_init(uart_ring *q, int baud) { if (q->uart == UART7) { REGISTER_INTERRUPT(UART7_IRQn, UART7_IRQ_Handler, 150000U, FAULT_INTERRUPT_RATE_UART_7) if (q->dma_rx) { // TODO } uart_set_baud(q->uart, baud); q->uart->CR1 = USART_CR1_UE | USART_CR1_TE | USART_CR1_RE; // Enable interrupt on RX not empty q->uart->CR1 |= USART_CR1_RXNEIE; // Enable UART interrupts NVIC_EnableIRQ(UART7_IRQn); // Initialise RX DMA if used if (q->dma_rx) { dma_rx_init(q); } } }