from tinygrad.helpers import IMAGE from tinygrad.lazy import get_single_root def image_conv2d_decorator(normal_conv): if IMAGE == 0: return normal_conv def image_conv2d(self, weight, bias=None, groups=1, stride=1, dilation=1, padding=0): (bs,_,iy,ix), (cout,cin,H,W) = self.shape, weight.shape rcout = cout//groups x, w = self, weight.reshape(groups, rcout, cin, H, W) # hack for non multiples of 4 on cin if cin % 4 != 0 and not (cin == 1 and groups%4 == 0): x = x.reshape(bs, groups, cin, iy, ix) # do this always? added_input_channels = 4 - (cin % 4) w = w.pad(tuple((0, added_input_channels) if i == 2 else (0, 0) for i in range(len(w.shape)))) x = x.pad(tuple((0, added_input_channels) if i == 2 else (0, 0) for i in range(len(x.shape)))) cin = cin + added_input_channels x = x.reshape(bs, groups*cin, iy, ix) # hack for non multiples of 4 on rcout added_output_channels = 0 if rcout % 4 != 0 and not (rcout == 1 and groups%4 == 0): added_output_channels = 4 - (rcout % 4) rcout += added_output_channels cout = groups * rcout w = w.slice(tuple((0, rcout) if i == 1 else (0, w.shape[i]) for i in range(len(w.shape)))) # packed (note: flipping bs and iy would make the auto-padding work) x = x.permute(0,2,3,1).reshape(bs * iy, ix * groups * cin//4, 4) cin_last = iy == 1 and ix == 1 if cin == 1: w = w.reshape(cout//4,4,H*W).permute(0,2,1) elif cin_last: w = w.reshape(cout//4,4,cin//4,4,H,W).permute(0,4,2,5,1,3).reshape(cout//4, H*cin//4*W*4, 4) else: w = w.reshape(cout//4,4,cin//4,4,H,W).permute(0,4,2,5,3,1).reshape(cout//4, H*cin//4*W*4, 4) # contiguous creates the image, and early realize static weights (TODO: test for the static weight) x, w = x.contiguous(), w.contiguous() if get_single_root(w.lazydata).realized: w.realize() # expand out rcin_hi, rcin_lo = cin//4 if cin >= 4 else 1, 4 if cin >= 4 else 1 cout_expand = [groups//4 if cin == 1 else groups, 4 if cin == 1 else 1, rcout//4 if rcout >= 4 else 1, 4 if rcout >= 4 else 1] x = x.reshape(bs, iy, ix, groups, rcin_hi, rcin_lo) if cin_last: w = w.reshape(cout//4, H, rcin_hi, W, 4, rcin_lo) else: w = w.reshape(cout//4, H, rcin_hi, W, rcin_lo, 4).permute(0,1,2,3,5,4) # padding padding_ = [padding]*4 if isinstance(padding, int) else (padding if len(padding) == 4 else [padding[1], padding[1], padding[0], padding[0]]) x = x.slice((None, (-padding_[2], x.shape[1]+padding_[3]), (-padding_[0], x.shape[2]+padding_[1]), None, None, None)) # prepare input x = x.permute(0,3,4,5,1,2)._pool((H, W), stride, dilation) # -> (bs, groups, rcin_hi, rcin_lo, oy, ox, H, W) oy, ox = x.shape[4:6] x = x.permute(0,4,5,1,2,3,6,7).reshape(bs, oy, ox, *cout_expand[0:2], 1, 1, rcin_hi, rcin_lo, H, W) x = x.expand(bs, oy, ox, *cout_expand, rcin_hi, rcin_lo, H, W) # prepare weights w = w.permute(0,4,2,5,1,3) w = w.reshape((1, 1, 1, *cout_expand, rcin_hi, rcin_lo, H, W)) # the conv! ret = (x*w).sum((-4, -3, -2, -1)).reshape(bs*oy, ox*cout//4, 4) if IMAGE >= 3: ret = ret.contiguous() # undo hack for non multiples of 4 on C.rcout if added_output_channels != 0: ret = ret.reshape(bs, oy, ox, groups, rcout)[:, :, :, :, :-added_output_channels] rcout -= added_output_channels cout = groups * rcout # NCHW output ret = ret.reshape(bs, oy, ox, cout).permute(0,3,1,2) return ret if bias is None else ret.add(bias.reshape(1, -1, 1, 1)) return image_conv2d