from typing import Optional, Union, Tuple from tinygrad.tensor import Tensor class BatchNorm2d: def __init__(self, sz, eps=1e-5, affine=True, track_running_stats=True, momentum=0.1): assert affine, "BatchNorm2d is only supported with affine" self.eps, self.track_running_stats, self.momentum = eps, track_running_stats, momentum self.weight, self.bias = Tensor.ones(sz), Tensor.zeros(sz) self.running_mean, self.running_var = Tensor.zeros(sz, requires_grad=False), Tensor.ones(sz, requires_grad=False) self.num_batches_tracked = Tensor.zeros(1, requires_grad=False) def __call__(self, x:Tensor): if Tensor.training: # This requires two full memory accesses to x # https://github.com/pytorch/pytorch/blob/c618dc13d2aa23625cb0d7ada694137532a4fa33/aten/src/ATen/native/cuda/Normalization.cuh # There's "online" algorithms that fix this, like https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_Online_algorithm x_detached = x.detach() batch_mean = x_detached.mean(axis=(0,2,3)) y = (x_detached - batch_mean.reshape(shape=[1, -1, 1, 1])) batch_var = (y*y).mean(axis=(0,2,3)) batch_invstd = batch_var.add(self.eps).pow(-0.5) self.batch_invstd = None # NOTE: wow, this is done all throughout training in most PyTorch models if self.track_running_stats: self.running_mean.assign((1 - self.momentum) * self.running_mean + self.momentum * batch_mean) self.running_var.assign((1 - self.momentum) * self.running_var + self.momentum * batch_var) self.num_batches_tracked += 1 else: batch_mean, batch_var = self.running_mean, self.running_var # NOTE: this can be precomputed for static inference. if you manually update running_var, you have to reset this if not hasattr(self, "batch_invstd") or not self.batch_invstd: self.batch_invstd = batch_var.add(self.eps).pow(-0.5) batch_invstd = self.batch_invstd return x.batchnorm(self.weight, self.bias, batch_mean, batch_invstd) # TODO: is this good weight init? class Conv2d: def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True): self.kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else (kernel_size[0], kernel_size[1]) self.stride = (stride, stride) if isinstance(stride, int) else (stride[0], stride[1]) self.padding = (padding, ) * 4 if isinstance(padding, int) else ((padding[0], padding[0], padding[1], padding[1]) if len(padding) == 2 else padding) # TODO: why is this realize needed? shouldn't it realize on the first run? self.weight = Tensor.glorot_uniform(out_channels, in_channels, self.kernel_size[0], self.kernel_size[1]).realize() self.bias = Tensor.zeros(out_channels).contiguous().realize() if bias else None def __call__(self, x): return x.conv2d(self.weight, self.bias, padding=self.padding, stride=self.stride) class Linear: def __init__(self, in_features, out_features, bias=True): self.weight = Tensor.glorot_uniform(out_features, in_features).realize() self.bias = Tensor.zeros(out_features).contiguous().realize() if bias else None def __call__(self, x): return x.linear(self.weight.transpose(), self.bias) class GroupNorm: def __init__(self, num_groups:int, num_channels:int, eps:float=1e-5, affine:bool=True): self.num_groups, self.num_channels, self.eps = num_groups, num_channels, eps self.weight : Optional[Tensor] = Tensor.ones(num_channels) if affine else None self.bias : Optional[Tensor] = Tensor.zeros(num_channels) if affine else None def __call__(self, x:Tensor): # reshape for layernorm to work as group norm # subtract mean and divide stddev x = x.reshape(x.shape[0], self.num_groups, -1).layernorm(eps=self.eps).reshape(x.shape) if self.weight is None or self.bias is None: return x # elementwise_affine on channels return x * self.weight.reshape(1, -1, 1, 1) + self.bias.reshape(1, -1, 1, 1) class LayerNorm: def __init__(self, normalized_shape:Union[int, Tuple[int, ...]], eps:float=1e-5, elementwise_affine:bool=True): normalized_shape = (normalized_shape,) if isinstance(normalized_shape, int) else tuple(normalized_shape) self.axis, self.eps, self.elementwise_affine = tuple(-1-i for i in range(len(normalized_shape))), eps, elementwise_affine self.weight, self.bias = (Tensor.ones(*normalized_shape), Tensor.zeros(*normalized_shape)) if elementwise_affine else (None, None) def __call__(self, x:Tensor): x = x.layernorm(eps=self.eps, axis=self.axis) if not self.elementwise_affine: return x return x * self.weight + self.bias