import math from cereal import car from common.conversions import Conversions as CV from common.numpy_fast import clip, interp from common.realtime import DT_MDL from selfdrive.modeld.constants import T_IDXS # WARNING: this value was determined based on the model's training distribution, # model predictions above this speed can be unpredictable V_CRUISE_MAX = 145 # kph V_CRUISE_MIN = 8 # kph V_CRUISE_ENABLE_MIN = 40 # kph V_CRUISE_INITIAL = 255 # kph MIN_SPEED = 1.0 LAT_MPC_N = 16 LON_MPC_N = 32 CONTROL_N = 17 CAR_ROTATION_RADIUS = 0.0 # EU guidelines MAX_LATERAL_JERK = 5.0 ButtonEvent = car.CarState.ButtonEvent ButtonType = car.CarState.ButtonEvent.Type CRUISE_LONG_PRESS = 50 CRUISE_NEAREST_FUNC = { ButtonType.accelCruise: math.ceil, ButtonType.decelCruise: math.floor, } CRUISE_INTERVAL_SIGN = { ButtonType.accelCruise: +1, ButtonType.decelCruise: -1, } class VCruiseHelper: def __init__(self, CP): self.CP = CP self.v_cruise_kph = V_CRUISE_INITIAL self.v_cruise_cluster_kph = V_CRUISE_INITIAL self.v_cruise_kph_last = 0 self.button_timers = {ButtonType.decelCruise: 0, ButtonType.accelCruise: 0} self.button_change_states = {btn: {"standstill": False, "enabled": False} for btn in self.button_timers} @property def v_cruise_initialized(self): return self.v_cruise_kph != V_CRUISE_INITIAL def update_v_cruise(self, CS, enabled, is_metric): self.v_cruise_kph_last = self.v_cruise_kph if CS.cruiseState.available: if not self.CP.pcmCruise: # if stock cruise is completely disabled, then we can use our own set speed logic self._update_v_cruise_non_pcm(CS, enabled, is_metric) self.v_cruise_cluster_kph = self.v_cruise_kph self.update_button_timers(CS, enabled) else: self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH self.v_cruise_cluster_kph = CS.cruiseState.speedCluster * CV.MS_TO_KPH else: self.v_cruise_kph = V_CRUISE_INITIAL self.v_cruise_cluster_kph = V_CRUISE_INITIAL def _update_v_cruise_non_pcm(self, CS, enabled, is_metric): # handle button presses. TODO: this should be in state_control, but a decelCruise press # would have the effect of both enabling and changing speed is checked after the state transition if not enabled: return long_press = False button_type = None # should be CV.MPH_TO_KPH, but this causes rounding errors v_cruise_delta = 1. if is_metric else 1.6 for b in CS.buttonEvents: if b.type.raw in self.button_timers and not b.pressed: if self.button_timers[b.type.raw] > CRUISE_LONG_PRESS: return # end long press button_type = b.type.raw break else: for k in self.button_timers.keys(): if self.button_timers[k] and self.button_timers[k] % CRUISE_LONG_PRESS == 0: button_type = k long_press = True break if button_type is None: return # Don't adjust speed when pressing resume to exit standstill cruise_standstill = self.button_change_states[button_type]["standstill"] or CS.cruiseState.standstill if button_type == ButtonType.accelCruise and cruise_standstill: return # Don't adjust speed if we've enabled since the button was depressed (some ports enable on rising edge) if not self.button_change_states[button_type]["enabled"]: return v_cruise_delta = v_cruise_delta * (5 if long_press else 1) if long_press and self.v_cruise_kph % v_cruise_delta != 0: # partial interval self.v_cruise_kph = CRUISE_NEAREST_FUNC[button_type](self.v_cruise_kph / v_cruise_delta) * v_cruise_delta else: self.v_cruise_kph += v_cruise_delta * CRUISE_INTERVAL_SIGN[button_type] # If set is pressed while overriding, clip cruise speed to minimum of vEgo if CS.gasPressed and button_type in (ButtonType.decelCruise, ButtonType.setCruise): self.v_cruise_kph = max(self.v_cruise_kph, CS.vEgo * CV.MS_TO_KPH) self.v_cruise_kph = clip(round(self.v_cruise_kph, 1), V_CRUISE_MIN, V_CRUISE_MAX) def update_button_timers(self, CS, enabled): # increment timer for buttons still pressed for k in self.button_timers: if self.button_timers[k] > 0: self.button_timers[k] += 1 for b in CS.buttonEvents: if b.type.raw in self.button_timers: # Start/end timer and store current state on change of button pressed self.button_timers[b.type.raw] = 1 if b.pressed else 0 self.button_change_states[b.type.raw] = {"standstill": CS.cruiseState.standstill, "enabled": enabled} def initialize_v_cruise(self, CS): # initializing is handled by the PCM if self.CP.pcmCruise: return # 250kph or above probably means we never had a set speed if any(b.type in (ButtonType.accelCruise, ButtonType.resumeCruise) for b in CS.buttonEvents) and self.v_cruise_kph_last < 250: self.v_cruise_kph = self.v_cruise_kph_last else: self.v_cruise_kph = int(round(clip(CS.vEgo * CV.MS_TO_KPH, V_CRUISE_ENABLE_MIN, V_CRUISE_MAX))) self.v_cruise_cluster_kph = self.v_cruise_kph def apply_deadzone(error, deadzone): if error > deadzone: error -= deadzone elif error < - deadzone: error += deadzone else: error = 0. return error def rate_limit(new_value, last_value, dw_step, up_step): return clip(new_value, last_value + dw_step, last_value + up_step) def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates): if len(psis) != CONTROL_N: psis = [0.0]*CONTROL_N curvatures = [0.0]*CONTROL_N curvature_rates = [0.0]*CONTROL_N v_ego = max(MIN_SPEED, v_ego) # TODO this needs more thought, use .2s extra for now to estimate other delays delay = CP.steerActuatorDelay + .2 # MPC can plan to turn the wheel and turn back before t_delay. This means # in high delay cases some corrections never even get commanded. So just use # psi to calculate a simple linearization of desired curvature current_curvature_desired = curvatures[0] psi = interp(delay, T_IDXS[:CONTROL_N], psis) average_curvature_desired = psi / (v_ego * delay) desired_curvature = 2 * average_curvature_desired - current_curvature_desired # This is the "desired rate of the setpoint" not an actual desired rate desired_curvature_rate = curvature_rates[0] max_curvature_rate = MAX_LATERAL_JERK / (v_ego**2) # inexact calculation, check https://github.com/commaai/openpilot/pull/24755 safe_desired_curvature_rate = clip(desired_curvature_rate, -max_curvature_rate, max_curvature_rate) safe_desired_curvature = clip(desired_curvature, current_curvature_desired - max_curvature_rate * DT_MDL, current_curvature_desired + max_curvature_rate * DT_MDL) return safe_desired_curvature, safe_desired_curvature_rate