#include "selfdrive/ui/qt/onroad/model.h" constexpr int CLIP_MARGIN = 500; constexpr float MIN_DRAW_DISTANCE = 10.0; constexpr float MAX_DRAW_DISTANCE = 100.0; static int get_path_length_idx(const cereal::XYZTData::Reader &line, const float path_height) { const auto &line_x = line.getX(); int max_idx = 0; for (int i = 1; i < line_x.size() && line_x[i] <= path_height; ++i) { max_idx = i; } return max_idx; } void ModelRenderer::draw(QPainter &painter, const QRect &surface_rect) { auto *s = uiState(); auto &sm = *(s->sm); // Check if data is up-to-date if (sm.rcv_frame("liveCalibration") < s->scene.started_frame || sm.rcv_frame("modelV2") < s->scene.started_frame) { return; } clip_region = surface_rect.adjusted(-CLIP_MARGIN, -CLIP_MARGIN, CLIP_MARGIN, CLIP_MARGIN); experimental_mode = sm["selfdriveState"].getSelfdriveState().getExperimentalMode(); longitudinal_control = sm["carParams"].getCarParams().getOpenpilotLongitudinalControl(); path_offset_z = sm["liveCalibration"].getLiveCalibration().getHeight()[0]; painter.save(); const auto &model = sm["modelV2"].getModelV2(); const auto &radar_state = sm["radarState"].getRadarState(); const auto &lead_one = radar_state.getLeadOne(); update_model(model, lead_one); drawLaneLines(painter); drawPath(painter, model, surface_rect.height()); if (longitudinal_control && sm.alive("radarState")) { update_leads(radar_state, model.getPosition()); const auto &lead_two = radar_state.getLeadTwo(); if (lead_one.getStatus()) { drawLead(painter, lead_one, lead_vertices[0], surface_rect); } if (lead_two.getStatus() && (std::abs(lead_one.getDRel() - lead_two.getDRel()) > 3.0)) { drawLead(painter, lead_two, lead_vertices[1], surface_rect); } } painter.restore(); } void ModelRenderer::update_leads(const cereal::RadarState::Reader &radar_state, const cereal::XYZTData::Reader &line) { for (int i = 0; i < 2; ++i) { const auto &lead_data = (i == 0) ? radar_state.getLeadOne() : radar_state.getLeadTwo(); if (lead_data.getStatus()) { float z = line.getZ()[get_path_length_idx(line, lead_data.getDRel())]; mapToScreen(lead_data.getDRel(), -lead_data.getYRel(), z + path_offset_z, &lead_vertices[i]); } } } void ModelRenderer::update_model(const cereal::ModelDataV2::Reader &model, const cereal::RadarState::LeadData::Reader &lead) { const auto &model_position = model.getPosition(); float max_distance = std::clamp(*(model_position.getX().end() - 1), MIN_DRAW_DISTANCE, MAX_DRAW_DISTANCE); // update lane lines const auto &lane_lines = model.getLaneLines(); const auto &line_probs = model.getLaneLineProbs(); int max_idx = get_path_length_idx(lane_lines[0], max_distance); for (int i = 0; i < std::size(lane_line_vertices); i++) { lane_line_probs[i] = line_probs[i]; mapLineToPolygon(lane_lines[i], 0.025 * lane_line_probs[i], 0, &lane_line_vertices[i], max_idx); } // update road edges const auto &road_edges = model.getRoadEdges(); const auto &edge_stds = model.getRoadEdgeStds(); for (int i = 0; i < std::size(road_edge_vertices); i++) { road_edge_stds[i] = edge_stds[i]; mapLineToPolygon(road_edges[i], 0.025, 0, &road_edge_vertices[i], max_idx); } // update path if (lead.getStatus()) { const float lead_d = lead.getDRel() * 2.; max_distance = std::clamp((float)(lead_d - fmin(lead_d * 0.35, 10.)), 0.0f, max_distance); } max_idx = get_path_length_idx(model_position, max_distance); mapLineToPolygon(model_position, 0.9, path_offset_z, &track_vertices, max_idx, false); } void ModelRenderer::drawLaneLines(QPainter &painter) { // lanelines for (int i = 0; i < std::size(lane_line_vertices); ++i) { painter.setBrush(QColor::fromRgbF(1.0, 1.0, 1.0, std::clamp(lane_line_probs[i], 0.0, 0.7))); painter.drawPolygon(lane_line_vertices[i]); } // road edges for (int i = 0; i < std::size(road_edge_vertices); ++i) { painter.setBrush(QColor::fromRgbF(1.0, 0, 0, std::clamp(1.0 - road_edge_stds[i], 0.0, 1.0))); painter.drawPolygon(road_edge_vertices[i]); } } void ModelRenderer::drawPath(QPainter &painter, const cereal::ModelDataV2::Reader &model, int height) { QLinearGradient bg(0, height, 0, 0); if (experimental_mode) { // The first half of track_vertices are the points for the right side of the path const auto &acceleration = model.getAcceleration().getX(); const int max_len = std::min(track_vertices.length() / 2, acceleration.size()); for (int i = 0; i < max_len; ++i) { // Some points are out of frame int track_idx = max_len - i - 1; // flip idx to start from bottom right if (track_vertices[track_idx].y() < 0 || track_vertices[track_idx].y() > height) continue; // Flip so 0 is bottom of frame float lin_grad_point = (height - track_vertices[track_idx].y()) / height; // speed up: 120, slow down: 0 float path_hue = fmax(fmin(60 + acceleration[i] * 35, 120), 0); // FIXME: painter.drawPolygon can be slow if hue is not rounded path_hue = int(path_hue * 100 + 0.5) / 100; float saturation = fmin(fabs(acceleration[i] * 1.5), 1); float lightness = util::map_val(saturation, 0.0f, 1.0f, 0.95f, 0.62f); // lighter when grey float alpha = util::map_val(lin_grad_point, 0.75f / 2.f, 0.75f, 0.4f, 0.0f); // matches previous alpha fade bg.setColorAt(lin_grad_point, QColor::fromHslF(path_hue / 360., saturation, lightness, alpha)); // Skip a point, unless next is last i += (i + 2) < max_len ? 1 : 0; } } else { updatePathGradient(bg); } painter.setBrush(bg); painter.drawPolygon(track_vertices); } void ModelRenderer::updatePathGradient(QLinearGradient &bg) { static const QColor throttle_colors[] = { QColor::fromHslF(148. / 360., 0.94, 0.51, 0.4), QColor::fromHslF(112. / 360., 1.0, 0.68, 0.35), QColor::fromHslF(112. / 360., 1.0, 0.68, 0.0)}; static const QColor no_throttle_colors[] = { QColor::fromHslF(148. / 360., 0.0, 0.95, 0.4), QColor::fromHslF(112. / 360., 0.0, 0.95, 0.35), QColor::fromHslF(112. / 360., 0.0, 0.95, 0.0), }; // Transition speed; 0.1 corresponds to 0.5 seconds at UI_FREQ constexpr float transition_speed = 0.1f; // Start transition if throttle state changes bool allow_throttle = (*uiState()->sm)["longitudinalPlan"].getLongitudinalPlan().getAllowThrottle() || !longitudinal_control; if (allow_throttle != prev_allow_throttle) { prev_allow_throttle = allow_throttle; // Invert blend factor for a smooth transition when the state changes mid-animation blend_factor = std::max(1.0f - blend_factor, 0.0f); } const QColor *begin_colors = allow_throttle ? no_throttle_colors : throttle_colors; const QColor *end_colors = allow_throttle ? throttle_colors : no_throttle_colors; if (blend_factor < 1.0f) { blend_factor = std::min(blend_factor + transition_speed, 1.0f); } // Set gradient colors by blending the start and end colors bg.setColorAt(0.0f, blendColors(begin_colors[0], end_colors[0], blend_factor)); bg.setColorAt(0.5f, blendColors(begin_colors[1], end_colors[1], blend_factor)); bg.setColorAt(1.0f, blendColors(begin_colors[2], end_colors[2], blend_factor)); } QColor ModelRenderer::blendColors(const QColor &start, const QColor &end, float t) { if (t == 1.0f) return end; return QColor::fromRgbF( (1 - t) * start.redF() + t * end.redF(), (1 - t) * start.greenF() + t * end.greenF(), (1 - t) * start.blueF() + t * end.blueF(), (1 - t) * start.alphaF() + t * end.alphaF()); } void ModelRenderer::drawLead(QPainter &painter, const cereal::RadarState::LeadData::Reader &lead_data, const QPointF &vd, const QRect &surface_rect) { const float speedBuff = 10.; const float leadBuff = 40.; const float d_rel = lead_data.getDRel(); const float v_rel = lead_data.getVRel(); float fillAlpha = 0; if (d_rel < leadBuff) { fillAlpha = 255 * (1.0 - (d_rel / leadBuff)); if (v_rel < 0) { fillAlpha += 255 * (-1 * (v_rel / speedBuff)); } fillAlpha = (int)(fmin(fillAlpha, 255)); } float sz = std::clamp((25 * 30) / (d_rel / 3 + 30), 15.0f, 30.0f) * 2.35; float x = std::clamp(vd.x(), 0.f, surface_rect.width() - sz / 2); float y = std::min(vd.y(), surface_rect.height() - sz * 0.6); float g_xo = sz / 5; float g_yo = sz / 10; QPointF glow[] = {{x + (sz * 1.35) + g_xo, y + sz + g_yo}, {x, y - g_yo}, {x - (sz * 1.35) - g_xo, y + sz + g_yo}}; painter.setBrush(QColor(218, 202, 37, 255)); painter.drawPolygon(glow, std::size(glow)); // chevron QPointF chevron[] = {{x + (sz * 1.25), y + sz}, {x, y}, {x - (sz * 1.25), y + sz}}; painter.setBrush(QColor(201, 34, 49, fillAlpha)); painter.drawPolygon(chevron, std::size(chevron)); } // Projects a point in car to space to the corresponding point in full frame image space. bool ModelRenderer::mapToScreen(float in_x, float in_y, float in_z, QPointF *out) { Eigen::Vector3f input(in_x, in_y, in_z); auto pt = car_space_transform * input; *out = QPointF(pt.x() / pt.z(), pt.y() / pt.z()); return clip_region.contains(*out); } void ModelRenderer::mapLineToPolygon(const cereal::XYZTData::Reader &line, float y_off, float z_off, QPolygonF *pvd, int max_idx, bool allow_invert) { const auto line_x = line.getX(), line_y = line.getY(), line_z = line.getZ(); QPointF left, right; pvd->clear(); for (int i = 0; i <= max_idx; i++) { // highly negative x positions are drawn above the frame and cause flickering, clip to zy plane of camera if (line_x[i] < 0) continue; bool l = mapToScreen(line_x[i], line_y[i] - y_off, line_z[i] + z_off, &left); bool r = mapToScreen(line_x[i], line_y[i] + y_off, line_z[i] + z_off, &right); if (l && r) { // For wider lines the drawn polygon will "invert" when going over a hill and cause artifacts if (!allow_invert && pvd->size() && left.y() > pvd->back().y()) { continue; } pvd->push_back(left); pvd->push_front(right); } } }