#!/usr/bin/env python3 import os, sys, io, pathlib sys.path.insert(0, str(pathlib.Path(__file__).parents[1])) if "FLOAT16" not in os.environ: os.environ["FLOAT16"] = "1" if "IMAGE" not in os.environ: os.environ["IMAGE"] = "2" if "NOLOCALS" not in os.environ: os.environ["NOLOCALS"] = "1" if "OPT" not in os.environ: os.environ["OPT"] = "99" os.environ["PREREALIZE"] = "0" OPENPILOT_MODEL = "https://github.com/commaai/openpilot/raw/v0.9.4/selfdrive/modeld/models/supercombo.onnx" import onnx from typing import Tuple, List from extra.utils import fetch from extra.onnx import get_run_onnx from tinygrad.graph import print_tree, log_schedule_item from tinygrad.tensor import Tensor from tinygrad.helpers import dtypes, partition, GlobalCounters, Context, DEBUG, getenv, ImageDType, GRAPH from tinygrad.realize import run_schedule from tinygrad.ops import LoadOps, Device, ScheduleItem from tinygrad.features.image import fix_schedule_for_images Device.DEFAULT = "GPU" def get_schedule(onnx_data) -> Tuple[List[ScheduleItem], List[ScheduleItem]]: Tensor.no_grad = True Tensor.training = False # load the model onnx_model = onnx.load(io.BytesIO(onnx_data)) run_onnx = get_run_onnx(onnx_model) input_shapes = {inp.name:tuple(x.dim_value for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input} # run the model inputs = {k:Tensor.empty(*shp) for k,shp in input_shapes.items()} ret: Tensor = next(iter(run_onnx(inputs).values())).cast(dtypes.float32).contiguous() schedule = ret.lazydata.schedule() # filter schedule that don't depend on the inputs input_lb = [x.lazydata.base for x in inputs.values()] depends = set(input_lb) for si in schedule: if any(b in depends for b in si.inputs): depends.add(si.out) # run all kernels that don't depend on the inputs # NOTE: there's two extra kernels due to fusions that now happen since the weights aren't realized schedule, schedule_independent = partition(schedule, lambda si: si.out in depends) print(f"{len(schedule)} schedule items depend on the input, {len(schedule_independent)} don't") # confirm no loadops in the (non independent) schedule except for the ones that load the input buffers assert all(si.ast.op not in LoadOps or si.out in input_lb for si in schedule), "has loadops, can't compile to Thneed" return schedule, schedule_independent, inputs def schedule_to_thneed(schedule, output_fn): from extra.thneed import Thneed # transform to CL.CACHE used_ops = 0 cl_cache = [] for si in schedule: prg = Device["GPU"].method_cache[si.ast] args = (si.out,) + si.inputs # pass these to thneed setattr(prg.clprg, 'op_estimate', prg.op_estimate) setattr(prg.clprg, 'prg', prg.prg) global_size = prg.global_size + [1]*(3-len(prg.global_size)) local_size = prg.local_size + [1]*(3-len(prg.local_size)) cl_cache.append((prg.clprg, [[int(g*l) for g,l in zip(global_size, local_size)], local_size, *[x.realized._buf for x in args]])) used_ops += prg.op_estimate from extra.thneed import Thneed input_rawbuffers = {k:inputs[k].lazydata.realized for k in inputs.keys()} t = Thneed(cl_cache, {k:v._buf for k,v in input_rawbuffers.items()}) # save thneed (before run) t.save(output_fn) print(f"buffers to save: {len(t.buffers_to_save)}, inputs: {list(t.inputs.keys())}, outputs: {t.outputs}") runtime = t.run() print(f"network using {used_ops/1e9:.2f} GOPS with runtime {runtime*1e3:.2f} ms that's {used_ops/runtime*1e-9:.2f} GFLOPS") def thneed_test_onnx(onnx_data, output_fn): import onnx import pyopencl as cl from tinygrad.runtime.ops_gpu import CL import numpy as np from extra.thneed import Thneed onnx_model = onnx.load(io.BytesIO(onnx_data)) input_shapes = {inp.name:tuple(x.dim_value for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input} inputs = {k:Tensor.randn(*shp, requires_grad=False)*8 for k,shp in input_shapes.items()} new_np_inputs = {k:v.realize().numpy() for k,v in inputs.items()} if getenv("ORT"): # test with onnxruntime import onnxruntime as ort onnx_session = ort.InferenceSession(onnx_data) onnx_output = onnx_session.run([onnx_model.graph.output[0].name], {k:v.astype(np.float16) for k,v in new_np_inputs.items()}) new_torch_out = onnx_output[0] else: # test with torch from test.models.test_onnx import run_onnx_torch new_torch_out = run_onnx_torch(onnx_model, new_np_inputs).numpy() if output_fn is None: # non thneed run_onnx = get_run_onnx(onnx_model) new_tinygrad_out = next(iter(run_onnx(inputs).values())).cast(dtypes.float32).numpy() np.testing.assert_allclose(new_torch_out, new_tinygrad_out, atol=1e-4, rtol=1e-2) print("classic self-test passed!") else: # load thneed and try that nt = Thneed() nt.load(output_fn) # inputs for k,v in nt.inputs.items(): cl.enqueue_copy(CL.cl_queue[0], v, new_np_inputs[k], is_blocking=True) nt.run() new_thneed_out = np.empty((nt.outputs[0].size//4,), dtype=np.float32).reshape(new_torch_out.shape) cl.enqueue_copy(CL.cl_queue[0], new_thneed_out, nt.outputs[0], is_blocking=True) # compare torch to thneed np.testing.assert_allclose(new_torch_out, new_thneed_out, atol=1e-4, rtol=1e-2) print("thneed self-test passed!") if __name__ == "__main__": onnx_data = fetch(sys.argv[1] if len(sys.argv) > 1 else OPENPILOT_MODEL) # quick test for ONNX issues #thneed_test_onnx(onnx_data, None) #exit(0) schedule, schedule_independent, inputs = get_schedule(onnx_data) schedule, schedule_input = partition(schedule, lambda x: x.ast.op not in LoadOps) print(f"{len(schedule_input)} inputs") run_schedule(schedule_independent, disable_logging=True) run_schedule(schedule_input) with Context(DEBUG=2, BEAM=getenv("LATEBEAM")): schedule = fix_schedule_for_images(schedule) image_count = sum(isinstance(si.out.dtype, ImageDType) for si in schedule) print(f"**** running real kernels {image_count}/{len(schedule)} images ****") if GRAPH: for si in schedule_input: log_schedule_item(si) for si in schedule: log_schedule_item(si) GlobalCounters.reset() run_schedule(schedule[:]) output_fn = sys.argv[2] if len(sys.argv) >= 3 else "/tmp/output.thneed" schedule_to_thneed(schedule, output_fn) FLOAT16 = getenv("FLOAT16", 0) if FLOAT16 == 0: try: thneed_test_onnx(onnx_data, output_fn) except ModuleNotFoundError as e: print(f"TEST NOT HAPPENING {e}")