import numpy as np
"""
Coordinate transformation module. All methods accept arrays as input
with each row as a position.
"""



a = 6378137
b = 6356752.3142
esq = 6.69437999014 * 0.001
e1sq = 6.73949674228 * 0.001


def geodetic2ecef(geodetic, radians=False):
  geodetic = np.array(geodetic)
  input_shape = geodetic.shape
  geodetic = np.atleast_2d(geodetic)

  ratio = 1.0 if radians else (np.pi / 180.0)
  lat = ratio*geodetic[:,0]
  lon = ratio*geodetic[:,1]
  alt = geodetic[:,2]

  xi = np.sqrt(1 - esq * np.sin(lat)**2)
  x = (a / xi + alt) * np.cos(lat) * np.cos(lon)
  y = (a / xi + alt) * np.cos(lat) * np.sin(lon)
  z = (a / xi * (1 - esq) + alt) * np.sin(lat)
  ecef = np.array([x, y, z]).T
  return ecef.reshape(input_shape)


def ecef2geodetic(ecef, radians=False):
  """
  Convert ECEF coordinates to geodetic using ferrari's method
  """
  # Save shape and export column
  ecef = np.atleast_1d(ecef)
  input_shape = ecef.shape
  ecef = np.atleast_2d(ecef)
  x, y, z = ecef[:, 0], ecef[:, 1], ecef[:, 2]

  ratio = 1.0 if radians else (180.0 / np.pi)

  # Conver from ECEF to geodetic using Ferrari's methods
  # https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#Ferrari.27s_solution
  r = np.sqrt(x * x + y * y)
  Esq = a * a - b * b
  F = 54 * b * b * z * z
  G = r * r + (1 - esq) * z * z - esq * Esq
  C = (esq * esq * F * r * r) / (pow(G, 3))
  S = np.cbrt(1 + C + np.sqrt(C * C + 2 * C))
  P = F / (3 * pow((S + 1 / S + 1), 2) * G * G)
  Q = np.sqrt(1 + 2 * esq * esq * P)
  r_0 =  -(P * esq * r) / (1 + Q) + np.sqrt(0.5 * a * a*(1 + 1.0 / Q) - \
        P * (1 - esq) * z * z / (Q * (1 + Q)) - 0.5 * P * r * r)
  U = np.sqrt(pow((r - esq * r_0), 2) + z * z)
  V = np.sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z)
  Z_0 = b * b * z / (a * V)
  h = U * (1 - b * b / (a * V))
  lat = ratio*np.arctan((z + e1sq * Z_0) / r)
  lon = ratio*np.arctan2(y, x)

  # stack the new columns and return to the original shape
  geodetic = np.column_stack((lat, lon, h))
  return geodetic.reshape(input_shape)

class LocalCoord():
  """
   Allows conversions to local frames. In this case NED.
   That is: North East Down from the start position in
   meters.
  """
  def __init__(self, init_geodetic, init_ecef):
    self.init_ecef = init_ecef
    lat, lon, _ = (np.pi/180)*np.array(init_geodetic)
    self.ned2ecef_matrix = np.array([[-np.sin(lat)*np.cos(lon), -np.sin(lon), -np.cos(lat)*np.cos(lon)],
                                     [-np.sin(lat)*np.sin(lon), np.cos(lon), -np.cos(lat)*np.sin(lon)],
                                     [np.cos(lat), 0, -np.sin(lat)]])
    self.ecef2ned_matrix = self.ned2ecef_matrix.T

  @classmethod
  def from_geodetic(cls, init_geodetic):
    init_ecef = geodetic2ecef(init_geodetic)
    return LocalCoord(init_geodetic, init_ecef)

  @classmethod
  def from_ecef(cls, init_ecef):
    init_geodetic = ecef2geodetic(init_ecef)
    return LocalCoord(init_geodetic, init_ecef)


  def ecef2ned(self, ecef):
    ecef = np.array(ecef)
    return np.dot(self.ecef2ned_matrix, (ecef - self.init_ecef).T).T

  def ned2ecef(self, ned):
    ned = np.array(ned)
    # Transpose so that init_ecef will broadcast correctly for 1d or 2d ned.
    return (np.dot(self.ned2ecef_matrix, ned.T).T + self.init_ecef)

  def geodetic2ned(self, geodetic):
    ecef = geodetic2ecef(geodetic)
    return self.ecef2ned(ecef)

  def ned2geodetic(self, ned):
    ecef = self.ned2ecef(ned)
    return ecef2geodetic(ecef)