#include "system/camerad/sensors/sensor.h" namespace { const float sensor_analog_gains_OS04C10[] = { 1.0, 1.0625, 1.125, 1.1875, 1.25, 1.3125, 1.375, 1.4375, 1.5, 1.5625, 1.6875, 1.8125, 1.9375, 2.0, 2.125, 2.25, 2.375, 2.5, 2.625, 2.75, 2.875, 3.0, 3.125, 3.375, 3.625, 3.875, 4.0, 4.25, 4.5, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5}; const uint32_t os04c10_analog_gains_reg[] = { 0x100, 0x110, 0x120, 0x130, 0x140, 0x150, 0x160, 0x170, 0x180, 0x190, 0x1B0, 0x1D0, 0x1F0, 0x200, 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x2E0, 0x300, 0x320, 0x360, 0x3A0, 0x3E0, 0x400, 0x440, 0x480, 0x4C0, 0x500, 0x540, 0x580, 0x5C0, 0x600, 0x640, 0x680, 0x700, 0x780, 0x800, 0x880, 0x900, 0x980, 0xA00, 0xA80, 0xB00, 0xB80, 0xC00, 0xC80, 0xD00, 0xD80, 0xE00, 0xE80, 0xF00, 0xF80}; const uint32_t VS_TIME_MIN_OS04C10 = 1; //const uint32_t VS_TIME_MAX_OS04C10 = 34; // vs < 35 } // namespace OS04C10::OS04C10() { image_sensor = cereal::FrameData::ImageSensor::OS04C10; data_word = false; frame_width = 1920; frame_height = 1080; frame_stride = (1920*10/8); /* frame_width = 0xa80; frame_height = 0x5f0; frame_stride = 0xd20; */ extra_height = 0; frame_offset = 0; start_reg_array.assign(std::begin(start_reg_array_os04c10), std::end(start_reg_array_os04c10)); init_reg_array.assign(std::begin(init_array_os04c10), std::end(init_array_os04c10)); probe_reg_addr = 0x300a; probe_expected_data = 0x5304; mipi_format = CAM_FORMAT_MIPI_RAW_10; frame_data_type = 0x2b; mclk_frequency = 24000000; // Hz dc_gain_factor = 7.32; dc_gain_min_weight = 1; // always on is fine dc_gain_max_weight = 1; dc_gain_on_grey = 0.9; dc_gain_off_grey = 1.0; exposure_time_min = 2; // 1x exposure_time_max = 2016; analog_gain_min_idx = 0x0; analog_gain_rec_idx = 0x0; // 1x analog_gain_max_idx = 0x36; analog_gain_cost_delta = -1; analog_gain_cost_low = 0.4; analog_gain_cost_high = 6.4; for (int i = 0; i <= analog_gain_max_idx; i++) { sensor_analog_gains[i] = sensor_analog_gains_OS04C10[i]; } min_ev = (exposure_time_min + VS_TIME_MIN_OS04C10) * sensor_analog_gains[analog_gain_min_idx]; max_ev = exposure_time_max * dc_gain_factor * sensor_analog_gains[analog_gain_max_idx]; target_grey_factor = 0.01; } std::vector OS04C10::getExposureRegisters(int exposure_time, int new_exp_g, bool dc_gain_enabled) const { // t_HCG&t_LCG + t_VS on LPD, t_SPD on SPD uint32_t hcg_time = exposure_time; //uint32_t lcg_time = hcg_time; //uint32_t spd_time = std::min(std::max((uint32_t)exposure_time, (exposure_time_max + VS_TIME_MAX_OS04C10) / 3), exposure_time_max + VS_TIME_MAX_OS04C10); //uint32_t vs_time = std::min(std::max((uint32_t)exposure_time / 40, VS_TIME_MIN_OS04C10), VS_TIME_MAX_OS04C10); uint32_t real_gain = os04c10_analog_gains_reg[new_exp_g]; hcg_time = 100; real_gain = 0x320; return { {0x3501, hcg_time>>8}, {0x3502, hcg_time&0xFF}, //{0x3581, lcg_time>>8}, {0x3582, lcg_time&0xFF}, //{0x3541, spd_time>>8}, {0x3542, spd_time&0xFF}, //{0x35c2, vs_time&0xFF}, {0x3508, real_gain>>8}, {0x3509, real_gain&0xFF}, }; } int OS04C10::getSlaveAddress(int port) const { assert(port >= 0 && port <= 2); return (int[]){0x6C, 0x20, 0x6C}[port]; } float OS04C10::getExposureScore(float desired_ev, int exp_t, int exp_g_idx, float exp_gain, int gain_idx) const { float score = std::abs(desired_ev - (exp_t * exp_gain)); float m = exp_g_idx > analog_gain_rec_idx ? analog_gain_cost_high : analog_gain_cost_low; score += std::abs(exp_g_idx - (int)analog_gain_rec_idx) * m; score += ((1 - analog_gain_cost_delta) + analog_gain_cost_delta * (exp_g_idx - analog_gain_min_idx) / (analog_gain_max_idx - analog_gain_min_idx)) * std::abs(exp_g_idx - gain_idx) * 5.0; return score; }