#include "selfdrive/modeld/thneed/thneed.h" #include #include #include #include "common/clutil.h" #include "common/timing.h" map, string> g_args; map, int> g_args_size; map g_program_source; void Thneed::stop() { //printf("Thneed::stop: recorded %lu commands\n", cmds.size()); record = false; } void Thneed::clinit() { device_id = cl_get_device_id(CL_DEVICE_TYPE_DEFAULT); if (context == NULL) context = CL_CHECK_ERR(clCreateContext(NULL, 1, &device_id, NULL, NULL, &err)); //cl_command_queue_properties props[3] = {CL_QUEUE_PROPERTIES, CL_QUEUE_PROFILING_ENABLE, 0}; cl_command_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; command_queue = CL_CHECK_ERR(clCreateCommandQueueWithProperties(context, device_id, props, &err)); printf("Thneed::clinit done\n"); } cl_int Thneed::clexec() { if (debug >= 1) printf("Thneed::clexec: running %lu queued kernels\n", kq.size()); for (auto &k : kq) { if (record) ckq.push_back(k); cl_int ret = k->exec(); assert(ret == CL_SUCCESS); } return clFinish(command_queue); } void Thneed::copy_inputs(float **finputs, bool internal) { for (int idx = 0; idx < inputs.size(); ++idx) { if (debug >= 1) printf("copying %lu -- %p -> %p (cl %p)\n", input_sizes[idx], finputs[idx], inputs[idx], input_clmem[idx]); if (internal) { // if it's internal, using memcpy is fine since the buffer sync is cached in the ioctl layer if (finputs[idx] != NULL) memcpy(inputs[idx], finputs[idx], input_sizes[idx]); } else { if (finputs[idx] != NULL) CL_CHECK(clEnqueueWriteBuffer(command_queue, input_clmem[idx], CL_TRUE, 0, input_sizes[idx], finputs[idx], 0, NULL, NULL)); } } } void Thneed::copy_output(float *foutput) { if (output != NULL) { size_t sz; clGetMemObjectInfo(output, CL_MEM_SIZE, sizeof(sz), &sz, NULL); if (debug >= 1) printf("copying %lu for output %p -> %p\n", sz, output, foutput); CL_CHECK(clEnqueueReadBuffer(command_queue, output, CL_TRUE, 0, sz, foutput, 0, NULL, NULL)); } else { printf("CAUTION: model output is NULL, does it have no outputs?\n"); } } // *********** CLQueuedKernel *********** CLQueuedKernel::CLQueuedKernel(Thneed *lthneed, cl_kernel _kernel, cl_uint _work_dim, const size_t *_global_work_size, const size_t *_local_work_size) { thneed = lthneed; kernel = _kernel; work_dim = _work_dim; assert(work_dim <= 3); for (int i = 0; i < work_dim; i++) { global_work_size[i] = _global_work_size[i]; local_work_size[i] = _local_work_size[i]; } char _name[0x100]; clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME, sizeof(_name), _name, NULL); name = string(_name); clGetKernelInfo(kernel, CL_KERNEL_NUM_ARGS, sizeof(num_args), &num_args, NULL); // get args for (int i = 0; i < num_args; i++) { char arg_name[0x100] = {0}; clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL); arg_names.push_back(string(arg_name)); clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_name), arg_name, NULL); arg_types.push_back(string(arg_name)); args.push_back(g_args[make_pair(kernel, i)]); args_size.push_back(g_args_size[make_pair(kernel, i)]); } // get program clGetKernelInfo(kernel, CL_KERNEL_PROGRAM, sizeof(program), &program, NULL); } int CLQueuedKernel::get_arg_num(const char *search_arg_name) { for (int i = 0; i < num_args; i++) { if (arg_names[i] == search_arg_name) return i; } printf("failed to find %s in %s\n", search_arg_name, name.c_str()); assert(false); } cl_int CLQueuedKernel::exec() { if (kernel == NULL) { kernel = clCreateKernel(program, name.c_str(), NULL); arg_names.clear(); arg_types.clear(); for (int j = 0; j < num_args; j++) { char arg_name[0x100] = {0}; clGetKernelArgInfo(kernel, j, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL); arg_names.push_back(string(arg_name)); clGetKernelArgInfo(kernel, j, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_name), arg_name, NULL); arg_types.push_back(string(arg_name)); cl_int ret; if (args[j].size() != 0) { assert(args[j].size() == args_size[j]); ret = thneed_clSetKernelArg(kernel, j, args[j].size(), args[j].data()); } else { ret = thneed_clSetKernelArg(kernel, j, args_size[j], NULL); } assert(ret == CL_SUCCESS); } } if (thneed->debug >= 1) { debug_print(thneed->debug >= 2); } return clEnqueueNDRangeKernel(thneed->command_queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL); } void CLQueuedKernel::debug_print(bool verbose) { printf("%p %56s -- ", kernel, name.c_str()); for (int i = 0; i < work_dim; i++) { printf("%4zu ", global_work_size[i]); } printf(" -- "); for (int i = 0; i < work_dim; i++) { printf("%4zu ", local_work_size[i]); } printf("\n"); if (verbose) { for (int i = 0; i < num_args; i++) { string arg = args[i]; printf(" %s %s", arg_types[i].c_str(), arg_names[i].c_str()); void *arg_value = (void*)arg.data(); int arg_size = arg.size(); if (arg_size == 0) { printf(" (size) %d", args_size[i]); } else if (arg_size == 1) { printf(" = %d", *((char*)arg_value)); } else if (arg_size == 2) { printf(" = %d", *((short*)arg_value)); } else if (arg_size == 4) { if (arg_types[i] == "float") { printf(" = %f", *((float*)arg_value)); } else { printf(" = %d", *((int*)arg_value)); } } else if (arg_size == 8) { cl_mem val = (cl_mem)(*((uintptr_t*)arg_value)); printf(" = %p", val); if (val != NULL) { cl_mem_object_type obj_type; clGetMemObjectInfo(val, CL_MEM_TYPE, sizeof(obj_type), &obj_type, NULL); if (arg_types[i] == "image2d_t" || arg_types[i] == "image1d_t" || obj_type == CL_MEM_OBJECT_IMAGE2D) { cl_image_format format; size_t width, height, depth, array_size, row_pitch, slice_pitch; cl_mem buf; clGetImageInfo(val, CL_IMAGE_FORMAT, sizeof(format), &format, NULL); assert(format.image_channel_order == CL_RGBA); assert(format.image_channel_data_type == CL_HALF_FLOAT || format.image_channel_data_type == CL_FLOAT); clGetImageInfo(val, CL_IMAGE_WIDTH, sizeof(width), &width, NULL); clGetImageInfo(val, CL_IMAGE_HEIGHT, sizeof(height), &height, NULL); clGetImageInfo(val, CL_IMAGE_ROW_PITCH, sizeof(row_pitch), &row_pitch, NULL); clGetImageInfo(val, CL_IMAGE_DEPTH, sizeof(depth), &depth, NULL); clGetImageInfo(val, CL_IMAGE_ARRAY_SIZE, sizeof(array_size), &array_size, NULL); clGetImageInfo(val, CL_IMAGE_SLICE_PITCH, sizeof(slice_pitch), &slice_pitch, NULL); assert(depth == 0); assert(array_size == 0); assert(slice_pitch == 0); clGetImageInfo(val, CL_IMAGE_BUFFER, sizeof(buf), &buf, NULL); size_t sz = 0; if (buf != NULL) clGetMemObjectInfo(buf, CL_MEM_SIZE, sizeof(sz), &sz, NULL); printf(" image %zu x %zu rp %zu @ %p buffer %zu", width, height, row_pitch, buf, sz); } else { size_t sz; clGetMemObjectInfo(val, CL_MEM_SIZE, sizeof(sz), &sz, NULL); printf(" buffer %zu", sz); } } } printf("\n"); } } } cl_int thneed_clSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) { g_args_size[make_pair(kernel, arg_index)] = arg_size; if (arg_value != NULL) { g_args[make_pair(kernel, arg_index)] = string((char*)arg_value, arg_size); } else { g_args[make_pair(kernel, arg_index)] = string(""); } cl_int ret = clSetKernelArg(kernel, arg_index, arg_size, arg_value); return ret; }