import capnp import numpy as np from typing import List, Dict from openpilot.selfdrive.modeld.models.driving_pyx import PublishState from openpilot.selfdrive.modeld.constants import T_IDXS, X_IDXS, LEAD_T_IDXS, META_T_IDXS, LEAD_T_OFFSETS def fill_xyzt(builder, t, x, y, z, x_std=None, y_std=None, z_std=None): builder.t = t builder.x = x.tolist() builder.y = y.tolist() builder.z = z.tolist() if x_std is not None: builder.xStd = x_std.tolist() if y_std is not None: builder.yStd = y_std.tolist() if z_std is not None: builder.zStd = z_std.tolist() def fill_xyvat(builder, t, x, y, v, a, x_std=None, y_std=None, v_std=None, a_std=None): builder.t = t builder.x = x.tolist() builder.y = y.tolist() builder.v = v.tolist() builder.a = a.tolist() if x_std is not None: builder.xStd = x_std.tolist() if y_std is not None: builder.yStd = y_std.tolist() if v_std is not None:builder.vStd = v_std.tolist() if a_std is not None:builder.aStd = a_std.tolist() def fill_model_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str, np.ndarray], ps: PublishState, vipc_frame_id: int, vipc_frame_id_extra: int, frame_id: int, frame_drop: float, timestamp_eof: int, timestamp_llk: int, model_execution_time: float, nav_enabled: bool, valid: bool) -> None: frame_age = frame_id - vipc_frame_id if frame_id > vipc_frame_id else 0 msg.valid = valid modelV2 = msg.modelV2 modelV2.frameId = vipc_frame_id modelV2.frameIdExtra = vipc_frame_id_extra modelV2.frameAge = frame_age modelV2.frameDropPerc = frame_drop * 100 modelV2.timestampEof = timestamp_eof modelV2.locationMonoTime = timestamp_llk modelV2.modelExecutionTime = model_execution_time modelV2.navEnabled = nav_enabled # plan fill_xyzt(modelV2.position, T_IDXS, net_output_data['plan'][0,:,0], net_output_data['plan'][0,:,1], net_output_data['plan'][0,:,2], net_output_data['plan_stds'][0,:,0], net_output_data['plan_stds'][0,:,1], net_output_data['plan_stds'][0,:,2]) fill_xyzt(modelV2.velocity, T_IDXS, net_output_data['plan'][0,:,3], net_output_data['plan'][0,:,4], net_output_data['plan'][0,:,5]) fill_xyzt(modelV2.acceleration, T_IDXS, net_output_data['plan'][0,:,6], net_output_data['plan'][0,:,7], net_output_data['plan'][0,:,8]) fill_xyzt(modelV2.orientation, T_IDXS, net_output_data['plan'][0,:,9], net_output_data['plan'][0,:,10], net_output_data['plan'][0,:,11]) fill_xyzt(modelV2.orientationRate, T_IDXS, net_output_data['plan'][0,:,12], net_output_data['plan'][0,:,13], net_output_data['plan'][0,:,14]) # lane lines modelV2.init('laneLines', 4) for i in range(4): fill_xyzt(modelV2.laneLines[i], T_IDXS, np.array(X_IDXS), net_output_data['lane_lines'][0,i,:,0], net_output_data['lane_lines'][0,i,:,1]) modelV2.laneLineStds = net_output_data['lane_lines_stds'][0,:,0,0].tolist() modelV2.laneLineProbs = net_output_data['lane_lines_prob'][0,1::2].tolist() # road edges modelV2.init('roadEdges', 2) for i in range(2): fill_xyzt(modelV2.roadEdges[i], T_IDXS, np.array(X_IDXS), net_output_data['road_edges'][0,i,:,0], net_output_data['road_edges'][0,i,:,1]) modelV2.roadEdgeStds = net_output_data['road_edges_stds'][0,:,0,0].tolist() # leads modelV2.init('leadsV3', 3) for i in range(3): fill_xyvat(modelV2.leadsV3[i], LEAD_T_IDXS, net_output_data['lead'][0,i,:,0], net_output_data['lead'][0,i,:,1], net_output_data['lead'][0,i,:,2], net_output_data['lead'][0,i,:,3], net_output_data['lead_stds'][0,i,:,0], net_output_data['lead_stds'][0,i,:,1], net_output_data['lead_stds'][0,i,:,2], net_output_data['lead_stds'][0,i,:,3]) modelV2.leadsV3[i].prob = net_output_data['lead_prob'][0,i].tolist() modelV2.leadsV3[i].probTime = LEAD_T_OFFSETS[i] # confidence # TODO modelV2.confidence = 0 # meta # TODO modelV2.meta.engagedProb = 0. modelV2.meta.hardBrakePredicted = False modelV2.meta.init('disengagePredictions') modelV2.meta.disengagePredictions.t = META_T_IDXS modelV2.meta.disengagePredictions.brakeDisengageProbs = np.zeros(5, dtype=np.float32).tolist() modelV2.meta.disengagePredictions.gasDisengageProbs = np.zeros(5, dtype=np.float32).tolist() modelV2.meta.disengagePredictions.steerOverrideProbs = np.zeros(5, dtype=np.float32).tolist() modelV2.meta.disengagePredictions.brake3MetersPerSecondSquaredProbs = np.zeros(5, dtype=np.float32).tolist() modelV2.meta.disengagePredictions.brake4MetersPerSecondSquaredProbs = np.zeros(5, dtype=np.float32).tolist() modelV2.meta.disengagePredictions.brake5MetersPerSecondSquaredProbs = np.zeros(5, dtype=np.float32).tolist() modelV2.meta.desirePrediction = np.zeros(4*8, dtype=np.float32).tolist() # temporal pose modelV2.temporalPose.trans = net_output_data['sim_pose'][0,:3].tolist() modelV2.temporalPose.transStd = net_output_data['sim_pose_stds'][0,:3].tolist() modelV2.temporalPose.rot = net_output_data['sim_pose'][0,3:].tolist() modelV2.temporalPose.rotStd = net_output_data['sim_pose_stds'][0,3:].tolist() def fill_pose_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str, np.ndarray], vipc_frame_id: int, vipc_dropped_frames: int, timestamp_eof: int, live_calib_seen: bool) -> None: msg.valid = live_calib_seen & (vipc_dropped_frames < 1) cameraOdometry = msg.cameraOdometry cameraOdometry.frameId = vipc_frame_id cameraOdometry.timestampEof = timestamp_eof cameraOdometry.trans = net_output_data['pose'][0,:3].tolist() cameraOdometry.rot = net_output_data['pose'][0,3:].tolist() cameraOdometry.wideFromDeviceEuler = net_output_data['wide_from_device_euler'][0,:].tolist() cameraOdometry.roadTransformTrans = net_output_data['road_transform'][0,:3].tolist() cameraOdometry.transStd = net_output_data['pose_stds'][0,:3].tolist() cameraOdometry.rotStd = net_output_data['pose_stds'][0,3:].tolist() cameraOdometry.wideFromDeviceEulerStd = net_output_data['wide_from_device_euler_stds'][0,:].tolist() cameraOdometry.roadTransformTransStd = net_output_data['road_transform_stds'][0,:3].tolist()