openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

85 lines
2.8 KiB

import pytest
import numpy as np
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc
from openpilot.selfdrive.controls.lib.drive_helpers import CAR_ROTATION_RADIUS
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import N as LAT_MPC_N
def run_mpc(lat_mpc=None, v_ref=30., x_init=0., y_init=0., psi_init=0., curvature_init=0.,
lane_width=3.6, poly_shift=0.):
if lat_mpc is None:
lat_mpc = LateralMpc()
lat_mpc.set_weights(1., .1, 0.0, .05, 800)
y_pts = poly_shift * np.ones(LAT_MPC_N + 1)
heading_pts = np.zeros(LAT_MPC_N + 1)
curv_rate_pts = np.zeros(LAT_MPC_N + 1)
x0 = np.array([x_init, y_init, psi_init, curvature_init])
p = np.column_stack([v_ref * np.ones(LAT_MPC_N + 1),
CAR_ROTATION_RADIUS * np.ones(LAT_MPC_N + 1)])
# converge in no more than 10 iterations
for _ in range(10):
lat_mpc.run(x0, p,
y_pts, heading_pts, curv_rate_pts)
return lat_mpc.x_sol
class TestLateralMpc:
def _assert_null(self, sol, curvature=1e-6):
for i in range(len(sol)):
assert sol[0,i,1] == pytest.approx(0, abs=curvature)
assert sol[0,i,2] == pytest.approx(0, abs=curvature)
assert sol[0,i,3] == pytest.approx(0, abs=curvature)
def _assert_simmetry(self, sol, curvature=1e-6):
for i in range(len(sol)):
assert sol[0,i,1] == pytest.approx(-sol[1,i,1], abs=curvature)
assert sol[0,i,2] == pytest.approx(-sol[1,i,2], abs=curvature)
assert sol[0,i,3] == pytest.approx(-sol[1,i,3], abs=curvature)
assert sol[0,i,0] == pytest.approx(sol[1,i,0], abs=curvature)
def test_straight(self):
sol = run_mpc()
self._assert_null(np.array([sol]))
def test_y_symmetry(self):
sol = []
for y_init in [-0.5, 0.5]:
sol.append(run_mpc(y_init=y_init))
self._assert_simmetry(np.array(sol))
def test_poly_symmetry(self):
sol = []
for poly_shift in [-1., 1.]:
sol.append(run_mpc(poly_shift=poly_shift))
self._assert_simmetry(np.array(sol))
def test_curvature_symmetry(self):
sol = []
for curvature_init in [-0.1, 0.1]:
sol.append(run_mpc(curvature_init=curvature_init))
self._assert_simmetry(np.array(sol))
def test_psi_symmetry(self):
sol = []
for psi_init in [-0.1, 0.1]:
sol.append(run_mpc(psi_init=psi_init))
self._assert_simmetry(np.array(sol))
def test_no_overshoot(self):
y_init = 1.
sol = run_mpc(y_init=y_init)
for y in list(sol[:,1]):
assert y_init >= abs(y)
def test_switch_convergence(self):
lat_mpc = LateralMpc()
sol = run_mpc(lat_mpc=lat_mpc, poly_shift=3.0, v_ref=7.0)
right_psi_deg = np.degrees(sol[:,2])
sol = run_mpc(lat_mpc=lat_mpc, poly_shift=-3.0, v_ref=7.0)
left_psi_deg = np.degrees(sol[:,2])
np.testing.assert_almost_equal(right_psi_deg, -left_psi_deg, decimal=3)