openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2949 lines
80 KiB

/**********************************************************************************************
*
* raymath v2.0 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
*
* CONVENTIONS:
* - Matrix structure is defined as row-major (memory layout) but parameters naming AND all
* math operations performed by the library consider the structure as it was column-major
* It is like transposed versions of the matrices are used for all the maths
* It benefits some functions making them cache-friendly and also avoids matrix
* transpositions sometimes required by OpenGL
* Example: In memory order, row0 is [m0 m4 m8 m12] but in semantic math row0 is [m0 m1 m2 m3]
* - Functions are always self-contained, no function use another raymath function inside,
* required code is directly re-implemented inside
* - Functions input parameters are always received by value (2 unavoidable exceptions)
* - Functions use always a "result" variable for return (except C++ operators)
* - Functions are always defined inline
* - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience)
* - No compound literals used to make sure libray is compatible with C++
*
* CONFIGURATION:
* #define RAYMATH_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
* #define RAYMATH_STATIC_INLINE
* Define static inline functions code, so #include header suffices for use.
* This may use up lots of memory.
*
* #define RAYMATH_DISABLE_CPP_OPERATORS
* Disables C++ operator overloads for raymath types.
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2015-2024 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#ifndef RAYMATH_H
#define RAYMATH_H
#if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_STATIC_INLINE)
#error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_STATIC_INLINE is contradictory"
#endif
// Function specifiers definition
#if defined(RAYMATH_IMPLEMENTATION)
#if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
#define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll)
#elif defined(BUILD_LIBTYPE_SHARED)
#define RMAPI __attribute__((visibility("default"))) // We are building raylib as a Unix shared library (.so/.dylib)
#elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
#define RMAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll)
#else
#define RMAPI extern inline // Provide external definition
#endif
#elif defined(RAYMATH_STATIC_INLINE)
#define RMAPI static inline // Functions may be inlined, no external out-of-line definition
#else
#if defined(__TINYC__)
#define RMAPI static inline // plain inline not supported by tinycc (See issue #435)
#else
#define RMAPI inline // Functions may be inlined or external definition used
#endif
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#ifndef PI
#define PI 3.14159265358979323846f
#endif
#ifndef EPSILON
#define EPSILON 0.000001f
#endif
#ifndef DEG2RAD
#define DEG2RAD (PI/180.0f)
#endif
#ifndef RAD2DEG
#define RAD2DEG (180.0f/PI)
#endif
// Get float vector for Matrix
#ifndef MatrixToFloat
#define MatrixToFloat(mat) (MatrixToFloatV(mat).v)
#endif
// Get float vector for Vector3
#ifndef Vector3ToFloat
#define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
#endif
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
#if !defined(RL_VECTOR2_TYPE)
// Vector2 type
typedef struct Vector2 {
float x;
float y;
} Vector2;
#define RL_VECTOR2_TYPE
#endif
#if !defined(RL_VECTOR3_TYPE)
// Vector3 type
typedef struct Vector3 {
float x;
float y;
float z;
} Vector3;
#define RL_VECTOR3_TYPE
#endif
#if !defined(RL_VECTOR4_TYPE)
// Vector4 type
typedef struct Vector4 {
float x;
float y;
float z;
float w;
} Vector4;
#define RL_VECTOR4_TYPE
#endif
#if !defined(RL_QUATERNION_TYPE)
// Quaternion type
typedef Vector4 Quaternion;
#define RL_QUATERNION_TYPE
#endif
#if !defined(RL_MATRIX_TYPE)
// Matrix type (OpenGL style 4x4 - right handed, column major)
typedef struct Matrix {
float m0, m4, m8, m12; // Matrix first row (4 components)
float m1, m5, m9, m13; // Matrix second row (4 components)
float m2, m6, m10, m14; // Matrix third row (4 components)
float m3, m7, m11, m15; // Matrix fourth row (4 components)
} Matrix;
#define RL_MATRIX_TYPE
#endif
// NOTE: Helper types to be used instead of array return types for *ToFloat functions
typedef struct float3 {
float v[3];
} float3;
typedef struct float16 {
float v[16];
} float16;
#include <math.h> // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabsf()
//----------------------------------------------------------------------------------
// Module Functions Definition - Utils math
//----------------------------------------------------------------------------------
// Clamp float value
RMAPI float Clamp(float value, float min, float max)
{
float result = (value < min)? min : value;
if (result > max) result = max;
return result;
}
// Calculate linear interpolation between two floats
RMAPI float Lerp(float start, float end, float amount)
{
float result = start + amount*(end - start);
return result;
}
// Normalize input value within input range
RMAPI float Normalize(float value, float start, float end)
{
float result = (value - start)/(end - start);
return result;
}
// Remap input value within input range to output range
RMAPI float Remap(float value, float inputStart, float inputEnd, float outputStart, float outputEnd)
{
float result = (value - inputStart)/(inputEnd - inputStart)*(outputEnd - outputStart) + outputStart;
return result;
}
// Wrap input value from min to max
RMAPI float Wrap(float value, float min, float max)
{
float result = value - (max - min)*floorf((value - min)/(max - min));
return result;
}
// Check whether two given floats are almost equal
RMAPI int FloatEquals(float x, float y)
{
#if !defined(EPSILON)
#define EPSILON 0.000001f
#endif
int result = (fabsf(x - y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(x), fabsf(y))));
return result;
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Vector2 math
//----------------------------------------------------------------------------------
// Vector with components value 0.0f
RMAPI Vector2 Vector2Zero(void)
{
Vector2 result = { 0.0f, 0.0f };
return result;
}
// Vector with components value 1.0f
RMAPI Vector2 Vector2One(void)
{
Vector2 result = { 1.0f, 1.0f };
return result;
}
// Add two vectors (v1 + v2)
RMAPI Vector2 Vector2Add(Vector2 v1, Vector2 v2)
{
Vector2 result = { v1.x + v2.x, v1.y + v2.y };
return result;
}
// Add vector and float value
RMAPI Vector2 Vector2AddValue(Vector2 v, float add)
{
Vector2 result = { v.x + add, v.y + add };
return result;
}
// Subtract two vectors (v1 - v2)
RMAPI Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
{
Vector2 result = { v1.x - v2.x, v1.y - v2.y };
return result;
}
// Subtract vector by float value
RMAPI Vector2 Vector2SubtractValue(Vector2 v, float sub)
{
Vector2 result = { v.x - sub, v.y - sub };
return result;
}
// Calculate vector length
RMAPI float Vector2Length(Vector2 v)
{
float result = sqrtf((v.x*v.x) + (v.y*v.y));
return result;
}
// Calculate vector square length
RMAPI float Vector2LengthSqr(Vector2 v)
{
float result = (v.x*v.x) + (v.y*v.y);
return result;
}
// Calculate two vectors dot product
RMAPI float Vector2DotProduct(Vector2 v1, Vector2 v2)
{
float result = (v1.x*v2.x + v1.y*v2.y);
return result;
}
// Calculate two vectors cross product
RMAPI float Vector2CrossProduct(Vector2 v1, Vector2 v2)
{
float result = (v1.x*v2.y - v1.y*v2.x);
return result;
}
// Calculate distance between two vectors
RMAPI float Vector2Distance(Vector2 v1, Vector2 v2)
{
float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
return result;
}
// Calculate square distance between two vectors
RMAPI float Vector2DistanceSqr(Vector2 v1, Vector2 v2)
{
float result = ((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
return result;
}
// Calculate angle between two vectors
// NOTE: Angle is calculated from origin point (0, 0)
RMAPI float Vector2Angle(Vector2 v1, Vector2 v2)
{
float result = 0.0f;
float dot = v1.x*v2.x + v1.y*v2.y;
float det = v1.x*v2.y - v1.y*v2.x;
result = atan2f(det, dot);
return result;
}
// Calculate angle defined by a two vectors line
// NOTE: Parameters need to be normalized
// Current implementation should be aligned with glm::angle
RMAPI float Vector2LineAngle(Vector2 start, Vector2 end)
{
float result = 0.0f;
// TODO(10/9/2023): Currently angles move clockwise, determine if this is wanted behavior
result = -atan2f(end.y - start.y, end.x - start.x);
return result;
}
// Scale vector (multiply by value)
RMAPI Vector2 Vector2Scale(Vector2 v, float scale)
{
Vector2 result = { v.x*scale, v.y*scale };
return result;
}
// Multiply vector by vector
RMAPI Vector2 Vector2Multiply(Vector2 v1, Vector2 v2)
{
Vector2 result = { v1.x*v2.x, v1.y*v2.y };
return result;
}
// Negate vector
RMAPI Vector2 Vector2Negate(Vector2 v)
{
Vector2 result = { -v.x, -v.y };
return result;
}
// Divide vector by vector
RMAPI Vector2 Vector2Divide(Vector2 v1, Vector2 v2)
{
Vector2 result = { v1.x/v2.x, v1.y/v2.y };
return result;
}
// Normalize provided vector
RMAPI Vector2 Vector2Normalize(Vector2 v)
{
Vector2 result = { 0 };
float length = sqrtf((v.x*v.x) + (v.y*v.y));
if (length > 0)
{
float ilength = 1.0f/length;
result.x = v.x*ilength;
result.y = v.y*ilength;
}
return result;
}
// Transforms a Vector2 by a given Matrix
RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat)
{
Vector2 result = { 0 };
float x = v.x;
float y = v.y;
float z = 0;
result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
return result;
}
// Calculate linear interpolation between two vectors
RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount)
{
Vector2 result = { 0 };
result.x = v1.x + amount*(v2.x - v1.x);
result.y = v1.y + amount*(v2.y - v1.y);
return result;
}
// Calculate reflected vector to normal
RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal)
{
Vector2 result = { 0 };
float dotProduct = (v.x*normal.x + v.y*normal.y); // Dot product
result.x = v.x - (2.0f*normal.x)*dotProduct;
result.y = v.y - (2.0f*normal.y)*dotProduct;
return result;
}
// Get min value for each pair of components
RMAPI Vector2 Vector2Min(Vector2 v1, Vector2 v2)
{
Vector2 result = { 0 };
result.x = fminf(v1.x, v2.x);
result.y = fminf(v1.y, v2.y);
return result;
}
// Get max value for each pair of components
RMAPI Vector2 Vector2Max(Vector2 v1, Vector2 v2)
{
Vector2 result = { 0 };
result.x = fmaxf(v1.x, v2.x);
result.y = fmaxf(v1.y, v2.y);
return result;
}
// Rotate vector by angle
RMAPI Vector2 Vector2Rotate(Vector2 v, float angle)
{
Vector2 result = { 0 };
float cosres = cosf(angle);
float sinres = sinf(angle);
result.x = v.x*cosres - v.y*sinres;
result.y = v.x*sinres + v.y*cosres;
return result;
}
// Move Vector towards target
RMAPI Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance)
{
Vector2 result = { 0 };
float dx = target.x - v.x;
float dy = target.y - v.y;
float value = (dx*dx) + (dy*dy);
if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
float dist = sqrtf(value);
result.x = v.x + dx/dist*maxDistance;
result.y = v.y + dy/dist*maxDistance;
return result;
}
// Invert the given vector
RMAPI Vector2 Vector2Invert(Vector2 v)
{
Vector2 result = { 1.0f/v.x, 1.0f/v.y };
return result;
}
// Clamp the components of the vector between
// min and max values specified by the given vectors
RMAPI Vector2 Vector2Clamp(Vector2 v, Vector2 min, Vector2 max)
{
Vector2 result = { 0 };
result.x = fminf(max.x, fmaxf(min.x, v.x));
result.y = fminf(max.y, fmaxf(min.y, v.y));
return result;
}
// Clamp the magnitude of the vector between two min and max values
RMAPI Vector2 Vector2ClampValue(Vector2 v, float min, float max)
{
Vector2 result = v;
float length = (v.x*v.x) + (v.y*v.y);
if (length > 0.0f)
{
length = sqrtf(length);
float scale = 1; // By default, 1 as the neutral element.
if (length < min)
{
scale = min/length;
}
else if (length > max)
{
scale = max/length;
}
result.x = v.x*scale;
result.y = v.y*scale;
}
return result;
}
// Check whether two given vectors are almost equal
RMAPI int Vector2Equals(Vector2 p, Vector2 q)
{
#if !defined(EPSILON)
#define EPSILON 0.000001f
#endif
int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y)))));
return result;
}
// Compute the direction of a refracted ray
// v: normalized direction of the incoming ray
// n: normalized normal vector of the interface of two optical media
// r: ratio of the refractive index of the medium from where the ray comes
// to the refractive index of the medium on the other side of the surface
RMAPI Vector2 Vector2Refract(Vector2 v, Vector2 n, float r)
{
Vector2 result = { 0 };
float dot = v.x*n.x + v.y*n.y;
float d = 1.0f - r*r*(1.0f - dot*dot);
if (d >= 0.0f)
{
d = sqrtf(d);
v.x = r*v.x - (r*dot + d)*n.x;
v.y = r*v.y - (r*dot + d)*n.y;
result = v;
}
return result;
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Vector3 math
//----------------------------------------------------------------------------------
// Vector with components value 0.0f
RMAPI Vector3 Vector3Zero(void)
{
Vector3 result = { 0.0f, 0.0f, 0.0f };
return result;
}
// Vector with components value 1.0f
RMAPI Vector3 Vector3One(void)
{
Vector3 result = { 1.0f, 1.0f, 1.0f };
return result;
}
// Add two vectors
RMAPI Vector3 Vector3Add(Vector3 v1, Vector3 v2)
{
Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
return result;
}
// Add vector and float value
RMAPI Vector3 Vector3AddValue(Vector3 v, float add)
{
Vector3 result = { v.x + add, v.y + add, v.z + add };
return result;
}
// Subtract two vectors
RMAPI Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
{
Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
return result;
}
// Subtract vector by float value
RMAPI Vector3 Vector3SubtractValue(Vector3 v, float sub)
{
Vector3 result = { v.x - sub, v.y - sub, v.z - sub };
return result;
}
// Multiply vector by scalar
RMAPI Vector3 Vector3Scale(Vector3 v, float scalar)
{
Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar };
return result;
}
// Multiply vector by vector
RMAPI Vector3 Vector3Multiply(Vector3 v1, Vector3 v2)
{
Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };
return result;
}
// Calculate two vectors cross product
RMAPI Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
{
Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
return result;
}
// Calculate one vector perpendicular vector
RMAPI Vector3 Vector3Perpendicular(Vector3 v)
{
Vector3 result = { 0 };
float min = fabsf(v.x);
Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
if (fabsf(v.y) < min)
{
min = fabsf(v.y);
Vector3 tmp = {0.0f, 1.0f, 0.0f};
cardinalAxis = tmp;
}
if (fabsf(v.z) < min)
{
Vector3 tmp = {0.0f, 0.0f, 1.0f};
cardinalAxis = tmp;
}
// Cross product between vectors
result.x = v.y*cardinalAxis.z - v.z*cardinalAxis.y;
result.y = v.z*cardinalAxis.x - v.x*cardinalAxis.z;
result.z = v.x*cardinalAxis.y - v.y*cardinalAxis.x;
return result;
}
// Calculate vector length
RMAPI float Vector3Length(const Vector3 v)
{
float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
return result;
}
// Calculate vector square length
RMAPI float Vector3LengthSqr(const Vector3 v)
{
float result = v.x*v.x + v.y*v.y + v.z*v.z;
return result;
}
// Calculate two vectors dot product
RMAPI float Vector3DotProduct(Vector3 v1, Vector3 v2)
{
float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
return result;
}
// Calculate distance between two vectors
RMAPI float Vector3Distance(Vector3 v1, Vector3 v2)
{
float result = 0.0f;
float dx = v2.x - v1.x;
float dy = v2.y - v1.y;
float dz = v2.z - v1.z;
result = sqrtf(dx*dx + dy*dy + dz*dz);
return result;
}
// Calculate square distance between two vectors
RMAPI float Vector3DistanceSqr(Vector3 v1, Vector3 v2)
{
float result = 0.0f;
float dx = v2.x - v1.x;
float dy = v2.y - v1.y;
float dz = v2.z - v1.z;
result = dx*dx + dy*dy + dz*dz;
return result;
}
// Calculate angle between two vectors
RMAPI float Vector3Angle(Vector3 v1, Vector3 v2)
{
float result = 0.0f;
Vector3 cross = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
float len = sqrtf(cross.x*cross.x + cross.y*cross.y + cross.z*cross.z);
float dot = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
result = atan2f(len, dot);
return result;
}
// Negate provided vector (invert direction)
RMAPI Vector3 Vector3Negate(Vector3 v)
{
Vector3 result = { -v.x, -v.y, -v.z };
return result;
}
// Divide vector by vector
RMAPI Vector3 Vector3Divide(Vector3 v1, Vector3 v2)
{
Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z };
return result;
}
// Normalize provided vector
RMAPI Vector3 Vector3Normalize(Vector3 v)
{
Vector3 result = v;
float length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
if (length != 0.0f)
{
float ilength = 1.0f/length;
result.x *= ilength;
result.y *= ilength;
result.z *= ilength;
}
return result;
}
//Calculate the projection of the vector v1 on to v2
RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2)
{
Vector3 result = { 0 };
float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);
float mag = v1dv2/v2dv2;
result.x = v2.x*mag;
result.y = v2.y*mag;
result.z = v2.z*mag;
return result;
}
//Calculate the rejection of the vector v1 on to v2
RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2)
{
Vector3 result = { 0 };
float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);
float mag = v1dv2/v2dv2;
result.x = v1.x - (v2.x*mag);
result.y = v1.y - (v2.y*mag);
result.z = v1.z - (v2.z*mag);
return result;
}
// Orthonormalize provided vectors
// Makes vectors normalized and orthogonal to each other
// Gram-Schmidt function implementation
RMAPI void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2)
{
float length = 0.0f;
float ilength = 0.0f;
// Vector3Normalize(*v1);
Vector3 v = *v1;
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
if (length == 0.0f) length = 1.0f;
ilength = 1.0f/length;
v1->x *= ilength;
v1->y *= ilength;
v1->z *= ilength;
// Vector3CrossProduct(*v1, *v2)
Vector3 vn1 = { v1->y*v2->z - v1->z*v2->y, v1->z*v2->x - v1->x*v2->z, v1->x*v2->y - v1->y*v2->x };
// Vector3Normalize(vn1);
v = vn1;
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
if (length == 0.0f) length = 1.0f;
ilength = 1.0f/length;
vn1.x *= ilength;
vn1.y *= ilength;
vn1.z *= ilength;
// Vector3CrossProduct(vn1, *v1)
Vector3 vn2 = { vn1.y*v1->z - vn1.z*v1->y, vn1.z*v1->x - vn1.x*v1->z, vn1.x*v1->y - vn1.y*v1->x };
*v2 = vn2;
}
// Transforms a Vector3 by a given Matrix
RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat)
{
Vector3 result = { 0 };
float x = v.x;
float y = v.y;
float z = v.z;
result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
return result;
}
// Transform a vector by quaternion rotation
RMAPI Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q)
{
Vector3 result = { 0 };
result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y);
result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z);
result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);
return result;
}
// Rotates a vector around an axis
RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle)
{
// Using Euler-Rodrigues Formula
// Ref.: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Rodrigues_formula
Vector3 result = v;
// Vector3Normalize(axis);
float length = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);
if (length == 0.0f) length = 1.0f;
float ilength = 1.0f/length;
axis.x *= ilength;
axis.y *= ilength;
axis.z *= ilength;
angle /= 2.0f;
float a = sinf(angle);
float b = axis.x*a;
float c = axis.y*a;
float d = axis.z*a;
a = cosf(angle);
Vector3 w = { b, c, d };
// Vector3CrossProduct(w, v)
Vector3 wv = { w.y*v.z - w.z*v.y, w.z*v.x - w.x*v.z, w.x*v.y - w.y*v.x };
// Vector3CrossProduct(w, wv)
Vector3 wwv = { w.y*wv.z - w.z*wv.y, w.z*wv.x - w.x*wv.z, w.x*wv.y - w.y*wv.x };
// Vector3Scale(wv, 2*a)
a *= 2;
wv.x *= a;
wv.y *= a;
wv.z *= a;
// Vector3Scale(wwv, 2)
wwv.x *= 2;
wwv.y *= 2;
wwv.z *= 2;
result.x += wv.x;
result.y += wv.y;
result.z += wv.z;
result.x += wwv.x;
result.y += wwv.y;
result.z += wwv.z;
return result;
}
// Move Vector towards target
RMAPI Vector3 Vector3MoveTowards(Vector3 v, Vector3 target, float maxDistance)
{
Vector3 result = { 0 };
float dx = target.x - v.x;
float dy = target.y - v.y;
float dz = target.z - v.z;
float value = (dx*dx) + (dy*dy) + (dz*dz);
if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
float dist = sqrtf(value);
result.x = v.x + dx/dist*maxDistance;
result.y = v.y + dy/dist*maxDistance;
result.z = v.z + dz/dist*maxDistance;
return result;
}
// Calculate linear interpolation between two vectors
RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
{
Vector3 result = { 0 };
result.x = v1.x + amount*(v2.x - v1.x);
result.y = v1.y + amount*(v2.y - v1.y);
result.z = v1.z + amount*(v2.z - v1.z);
return result;
}
// Calculate cubic hermite interpolation between two vectors and their tangents
// as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
RMAPI Vector3 Vector3CubicHermite(Vector3 v1, Vector3 tangent1, Vector3 v2, Vector3 tangent2, float amount)
{
Vector3 result = { 0 };
float amountPow2 = amount*amount;
float amountPow3 = amount*amount*amount;
result.x = (2*amountPow3 - 3*amountPow2 + 1)*v1.x + (amountPow3 - 2*amountPow2 + amount)*tangent1.x + (-2*amountPow3 + 3*amountPow2)*v2.x + (amountPow3 - amountPow2)*tangent2.x;
result.y = (2*amountPow3 - 3*amountPow2 + 1)*v1.y + (amountPow3 - 2*amountPow2 + amount)*tangent1.y + (-2*amountPow3 + 3*amountPow2)*v2.y + (amountPow3 - amountPow2)*tangent2.y;
result.z = (2*amountPow3 - 3*amountPow2 + 1)*v1.z + (amountPow3 - 2*amountPow2 + amount)*tangent1.z + (-2*amountPow3 + 3*amountPow2)*v2.z + (amountPow3 - amountPow2)*tangent2.z;
return result;
}
// Calculate reflected vector to normal
RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
{
Vector3 result = { 0 };
// I is the original vector
// N is the normal of the incident plane
// R = I - (2*N*(DotProduct[I, N]))
float dotProduct = (v.x*normal.x + v.y*normal.y + v.z*normal.z);
result.x = v.x - (2.0f*normal.x)*dotProduct;
result.y = v.y - (2.0f*normal.y)*dotProduct;
result.z = v.z - (2.0f*normal.z)*dotProduct;
return result;
}
// Get min value for each pair of components
RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2)
{
Vector3 result = { 0 };
result.x = fminf(v1.x, v2.x);
result.y = fminf(v1.y, v2.y);
result.z = fminf(v1.z, v2.z);
return result;
}
// Get max value for each pair of components
RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2)
{
Vector3 result = { 0 };
result.x = fmaxf(v1.x, v2.x);
result.y = fmaxf(v1.y, v2.y);
result.z = fmaxf(v1.z, v2.z);
return result;
}
// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
// NOTE: Assumes P is on the plane of the triangle
RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
{
Vector3 result = { 0 };
Vector3 v0 = { b.x - a.x, b.y - a.y, b.z - a.z }; // Vector3Subtract(b, a)
Vector3 v1 = { c.x - a.x, c.y - a.y, c.z - a.z }; // Vector3Subtract(c, a)
Vector3 v2 = { p.x - a.x, p.y - a.y, p.z - a.z }; // Vector3Subtract(p, a)
float d00 = (v0.x*v0.x + v0.y*v0.y + v0.z*v0.z); // Vector3DotProduct(v0, v0)
float d01 = (v0.x*v1.x + v0.y*v1.y + v0.z*v1.z); // Vector3DotProduct(v0, v1)
float d11 = (v1.x*v1.x + v1.y*v1.y + v1.z*v1.z); // Vector3DotProduct(v1, v1)
float d20 = (v2.x*v0.x + v2.y*v0.y + v2.z*v0.z); // Vector3DotProduct(v2, v0)
float d21 = (v2.x*v1.x + v2.y*v1.y + v2.z*v1.z); // Vector3DotProduct(v2, v1)
float denom = d00*d11 - d01*d01;
result.y = (d11*d20 - d01*d21)/denom;
result.z = (d00*d21 - d01*d20)/denom;
result.x = 1.0f - (result.z + result.y);
return result;
}
// Projects a Vector3 from screen space into object space
// NOTE: We are avoiding calling other raymath functions despite available
RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view)
{
Vector3 result = { 0 };
// Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it
Matrix matViewProj = { // MatrixMultiply(view, projection);
view.m0*projection.m0 + view.m1*projection.m4 + view.m2*projection.m8 + view.m3*projection.m12,
view.m0*projection.m1 + view.m1*projection.m5 + view.m2*projection.m9 + view.m3*projection.m13,
view.m0*projection.m2 + view.m1*projection.m6 + view.m2*projection.m10 + view.m3*projection.m14,
view.m0*projection.m3 + view.m1*projection.m7 + view.m2*projection.m11 + view.m3*projection.m15,
view.m4*projection.m0 + view.m5*projection.m4 + view.m6*projection.m8 + view.m7*projection.m12,
view.m4*projection.m1 + view.m5*projection.m5 + view.m6*projection.m9 + view.m7*projection.m13,
view.m4*projection.m2 + view.m5*projection.m6 + view.m6*projection.m10 + view.m7*projection.m14,
view.m4*projection.m3 + view.m5*projection.m7 + view.m6*projection.m11 + view.m7*projection.m15,
view.m8*projection.m0 + view.m9*projection.m4 + view.m10*projection.m8 + view.m11*projection.m12,
view.m8*projection.m1 + view.m9*projection.m5 + view.m10*projection.m9 + view.m11*projection.m13,
view.m8*projection.m2 + view.m9*projection.m6 + view.m10*projection.m10 + view.m11*projection.m14,
view.m8*projection.m3 + view.m9*projection.m7 + view.m10*projection.m11 + view.m11*projection.m15,
view.m12*projection.m0 + view.m13*projection.m4 + view.m14*projection.m8 + view.m15*projection.m12,
view.m12*projection.m1 + view.m13*projection.m5 + view.m14*projection.m9 + view.m15*projection.m13,
view.m12*projection.m2 + view.m13*projection.m6 + view.m14*projection.m10 + view.m15*projection.m14,
view.m12*projection.m3 + view.m13*projection.m7 + view.m14*projection.m11 + view.m15*projection.m15 };
// Calculate inverted matrix -> MatrixInvert(matViewProj);
// Cache the matrix values (speed optimization)
float a00 = matViewProj.m0, a01 = matViewProj.m1, a02 = matViewProj.m2, a03 = matViewProj.m3;
float a10 = matViewProj.m4, a11 = matViewProj.m5, a12 = matViewProj.m6, a13 = matViewProj.m7;
float a20 = matViewProj.m8, a21 = matViewProj.m9, a22 = matViewProj.m10, a23 = matViewProj.m11;
float a30 = matViewProj.m12, a31 = matViewProj.m13, a32 = matViewProj.m14, a33 = matViewProj.m15;
float b00 = a00*a11 - a01*a10;
float b01 = a00*a12 - a02*a10;
float b02 = a00*a13 - a03*a10;
float b03 = a01*a12 - a02*a11;
float b04 = a01*a13 - a03*a11;
float b05 = a02*a13 - a03*a12;
float b06 = a20*a31 - a21*a30;
float b07 = a20*a32 - a22*a30;
float b08 = a20*a33 - a23*a30;
float b09 = a21*a32 - a22*a31;
float b10 = a21*a33 - a23*a31;
float b11 = a22*a33 - a23*a32;
// Calculate the invert determinant (inlined to avoid double-caching)
float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
Matrix matViewProjInv = {
(a11*b11 - a12*b10 + a13*b09)*invDet,
(-a01*b11 + a02*b10 - a03*b09)*invDet,
(a31*b05 - a32*b04 + a33*b03)*invDet,
(-a21*b05 + a22*b04 - a23*b03)*invDet,
(-a10*b11 + a12*b08 - a13*b07)*invDet,
(a00*b11 - a02*b08 + a03*b07)*invDet,
(-a30*b05 + a32*b02 - a33*b01)*invDet,
(a20*b05 - a22*b02 + a23*b01)*invDet,
(a10*b10 - a11*b08 + a13*b06)*invDet,
(-a00*b10 + a01*b08 - a03*b06)*invDet,
(a30*b04 - a31*b02 + a33*b00)*invDet,
(-a20*b04 + a21*b02 - a23*b00)*invDet,
(-a10*b09 + a11*b07 - a12*b06)*invDet,
(a00*b09 - a01*b07 + a02*b06)*invDet,
(-a30*b03 + a31*b01 - a32*b00)*invDet,
(a20*b03 - a21*b01 + a22*b00)*invDet };
// Create quaternion from source point
Quaternion quat = { source.x, source.y, source.z, 1.0f };
// Multiply quat point by unprojecte matrix
Quaternion qtransformed = { // QuaternionTransform(quat, matViewProjInv)
matViewProjInv.m0*quat.x + matViewProjInv.m4*quat.y + matViewProjInv.m8*quat.z + matViewProjInv.m12*quat.w,
matViewProjInv.m1*quat.x + matViewProjInv.m5*quat.y + matViewProjInv.m9*quat.z + matViewProjInv.m13*quat.w,
matViewProjInv.m2*quat.x + matViewProjInv.m6*quat.y + matViewProjInv.m10*quat.z + matViewProjInv.m14*quat.w,
matViewProjInv.m3*quat.x + matViewProjInv.m7*quat.y + matViewProjInv.m11*quat.z + matViewProjInv.m15*quat.w };
// Normalized world points in vectors
result.x = qtransformed.x/qtransformed.w;
result.y = qtransformed.y/qtransformed.w;
result.z = qtransformed.z/qtransformed.w;
return result;
}
// Get Vector3 as float array
RMAPI float3 Vector3ToFloatV(Vector3 v)
{
float3 buffer = { 0 };
buffer.v[0] = v.x;
buffer.v[1] = v.y;
buffer.v[2] = v.z;
return buffer;
}
// Invert the given vector
RMAPI Vector3 Vector3Invert(Vector3 v)
{
Vector3 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z };
return result;
}
// Clamp the components of the vector between
// min and max values specified by the given vectors
RMAPI Vector3 Vector3Clamp(Vector3 v, Vector3 min, Vector3 max)
{
Vector3 result = { 0 };
result.x = fminf(max.x, fmaxf(min.x, v.x));
result.y = fminf(max.y, fmaxf(min.y, v.y));
result.z = fminf(max.z, fmaxf(min.z, v.z));
return result;
}
// Clamp the magnitude of the vector between two values
RMAPI Vector3 Vector3ClampValue(Vector3 v, float min, float max)
{
Vector3 result = v;
float length = (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
if (length > 0.0f)
{
length = sqrtf(length);
float scale = 1; // By default, 1 as the neutral element.
if (length < min)
{
scale = min/length;
}
else if (length > max)
{
scale = max/length;
}
result.x = v.x*scale;
result.y = v.y*scale;
result.z = v.z*scale;
}
return result;
}
// Check whether two given vectors are almost equal
RMAPI int Vector3Equals(Vector3 p, Vector3 q)
{
#if !defined(EPSILON)
#define EPSILON 0.000001f
#endif
int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z)))));
return result;
}
// Compute the direction of a refracted ray
// v: normalized direction of the incoming ray
// n: normalized normal vector of the interface of two optical media
// r: ratio of the refractive index of the medium from where the ray comes
// to the refractive index of the medium on the other side of the surface
RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r)
{
Vector3 result = { 0 };
float dot = v.x*n.x + v.y*n.y + v.z*n.z;
float d = 1.0f - r*r*(1.0f - dot*dot);
if (d >= 0.0f)
{
d = sqrtf(d);
v.x = r*v.x - (r*dot + d)*n.x;
v.y = r*v.y - (r*dot + d)*n.y;
v.z = r*v.z - (r*dot + d)*n.z;
result = v;
}
return result;
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Vector4 math
//----------------------------------------------------------------------------------
RMAPI Vector4 Vector4Zero(void)
{
Vector4 result = { 0.0f, 0.0f, 0.0f, 0.0f };
return result;
}
RMAPI Vector4 Vector4One(void)
{
Vector4 result = { 1.0f, 1.0f, 1.0f, 1.0f };
return result;
}
RMAPI Vector4 Vector4Add(Vector4 v1, Vector4 v2)
{
Vector4 result = {
v1.x + v2.x,
v1.y + v2.y,
v1.z + v2.z,
v1.w + v2.w
};
return result;
}
RMAPI Vector4 Vector4AddValue(Vector4 v, float add)
{
Vector4 result = {
v.x + add,
v.y + add,
v.z + add,
v.w + add
};
return result;
}
RMAPI Vector4 Vector4Subtract(Vector4 v1, Vector4 v2)
{
Vector4 result = {
v1.x - v2.x,
v1.y - v2.y,
v1.z - v2.z,
v1.w - v2.w
};
return result;
}
RMAPI Vector4 Vector4SubtractValue(Vector4 v, float add)
{
Vector4 result = {
v.x - add,
v.y - add,
v.z - add,
v.w - add
};
return result;
}
RMAPI float Vector4Length(Vector4 v)
{
float result = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w));
return result;
}
RMAPI float Vector4LengthSqr(Vector4 v)
{
float result = (v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w);
return result;
}
RMAPI float Vector4DotProduct(Vector4 v1, Vector4 v2)
{
float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z + v1.w*v2.w);
return result;
}
// Calculate distance between two vectors
RMAPI float Vector4Distance(Vector4 v1, Vector4 v2)
{
float result = sqrtf(
(v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) +
(v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w));
return result;
}
// Calculate square distance between two vectors
RMAPI float Vector4DistanceSqr(Vector4 v1, Vector4 v2)
{
float result =
(v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) +
(v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w);
return result;
}
RMAPI Vector4 Vector4Scale(Vector4 v, float scale)
{
Vector4 result = { v.x*scale, v.y*scale, v.z*scale, v.w*scale };
return result;
}
// Multiply vector by vector
RMAPI Vector4 Vector4Multiply(Vector4 v1, Vector4 v2)
{
Vector4 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z, v1.w*v2.w };
return result;
}
// Negate vector
RMAPI Vector4 Vector4Negate(Vector4 v)
{
Vector4 result = { -v.x, -v.y, -v.z, -v.w };
return result;
}
// Divide vector by vector
RMAPI Vector4 Vector4Divide(Vector4 v1, Vector4 v2)
{
Vector4 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z, v1.w/v2.w };
return result;
}
// Normalize provided vector
RMAPI Vector4 Vector4Normalize(Vector4 v)
{
Vector4 result = { 0 };
float length = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w));
if (length > 0)
{
float ilength = 1.0f/length;
result.x = v.x*ilength;
result.y = v.y*ilength;
result.z = v.z*ilength;
result.w = v.w*ilength;
}
return result;
}
// Get min value for each pair of components
RMAPI Vector4 Vector4Min(Vector4 v1, Vector4 v2)
{
Vector4 result = { 0 };
result.x = fminf(v1.x, v2.x);
result.y = fminf(v1.y, v2.y);
result.z = fminf(v1.z, v2.z);
result.w = fminf(v1.w, v2.w);
return result;
}
// Get max value for each pair of components
RMAPI Vector4 Vector4Max(Vector4 v1, Vector4 v2)
{
Vector4 result = { 0 };
result.x = fmaxf(v1.x, v2.x);
result.y = fmaxf(v1.y, v2.y);
result.z = fmaxf(v1.z, v2.z);
result.w = fmaxf(v1.w, v2.w);
return result;
}
// Calculate linear interpolation between two vectors
RMAPI Vector4 Vector4Lerp(Vector4 v1, Vector4 v2, float amount)
{
Vector4 result = { 0 };
result.x = v1.x + amount*(v2.x - v1.x);
result.y = v1.y + amount*(v2.y - v1.y);
result.z = v1.z + amount*(v2.z - v1.z);
result.w = v1.w + amount*(v2.w - v1.w);
return result;
}
// Move Vector towards target
RMAPI Vector4 Vector4MoveTowards(Vector4 v, Vector4 target, float maxDistance)
{
Vector4 result = { 0 };
float dx = target.x - v.x;
float dy = target.y - v.y;
float dz = target.z - v.z;
float dw = target.w - v.w;
float value = (dx*dx) + (dy*dy) + (dz*dz) + (dw*dw);
if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
float dist = sqrtf(value);
result.x = v.x + dx/dist*maxDistance;
result.y = v.y + dy/dist*maxDistance;
result.z = v.z + dz/dist*maxDistance;
result.w = v.w + dw/dist*maxDistance;
return result;
}
// Invert the given vector
RMAPI Vector4 Vector4Invert(Vector4 v)
{
Vector4 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z, 1.0f/v.w };
return result;
}
// Check whether two given vectors are almost equal
RMAPI int Vector4Equals(Vector4 p, Vector4 q)
{
#if !defined(EPSILON)
#define EPSILON 0.000001f
#endif
int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))));
return result;
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Matrix math
//----------------------------------------------------------------------------------
// Compute matrix determinant
RMAPI float MatrixDeterminant(Matrix mat)
{
float result = 0.0f;
// Cache the matrix values (speed optimization)
float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
return result;
}
// Get the trace of the matrix (sum of the values along the diagonal)
RMAPI float MatrixTrace(Matrix mat)
{
float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15);
return result;
}
// Transposes provided matrix
RMAPI Matrix MatrixTranspose(Matrix mat)
{
Matrix result = { 0 };
result.m0 = mat.m0;
result.m1 = mat.m4;
result.m2 = mat.m8;
result.m3 = mat.m12;
result.m4 = mat.m1;
result.m5 = mat.m5;
result.m6 = mat.m9;
result.m7 = mat.m13;
result.m8 = mat.m2;
result.m9 = mat.m6;
result.m10 = mat.m10;
result.m11 = mat.m14;
result.m12 = mat.m3;
result.m13 = mat.m7;
result.m14 = mat.m11;
result.m15 = mat.m15;
return result;
}
// Invert provided matrix
RMAPI Matrix MatrixInvert(Matrix mat)
{
Matrix result = { 0 };
// Cache the matrix values (speed optimization)
float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
float b00 = a00*a11 - a01*a10;
float b01 = a00*a12 - a02*a10;
float b02 = a00*a13 - a03*a10;
float b03 = a01*a12 - a02*a11;
float b04 = a01*a13 - a03*a11;
float b05 = a02*a13 - a03*a12;
float b06 = a20*a31 - a21*a30;
float b07 = a20*a32 - a22*a30;
float b08 = a20*a33 - a23*a30;
float b09 = a21*a32 - a22*a31;
float b10 = a21*a33 - a23*a31;
float b11 = a22*a33 - a23*a32;
// Calculate the invert determinant (inlined to avoid double-caching)
float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
return result;
}
// Get identity matrix
RMAPI Matrix MatrixIdentity(void)
{
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f };
return result;
}
// Add two matrices
RMAPI Matrix MatrixAdd(Matrix left, Matrix right)
{
Matrix result = { 0 };
result.m0 = left.m0 + right.m0;
result.m1 = left.m1 + right.m1;
result.m2 = left.m2 + right.m2;
result.m3 = left.m3 + right.m3;
result.m4 = left.m4 + right.m4;
result.m5 = left.m5 + right.m5;
result.m6 = left.m6 + right.m6;
result.m7 = left.m7 + right.m7;
result.m8 = left.m8 + right.m8;
result.m9 = left.m9 + right.m9;
result.m10 = left.m10 + right.m10;
result.m11 = left.m11 + right.m11;
result.m12 = left.m12 + right.m12;
result.m13 = left.m13 + right.m13;
result.m14 = left.m14 + right.m14;
result.m15 = left.m15 + right.m15;
return result;
}
// Subtract two matrices (left - right)
RMAPI Matrix MatrixSubtract(Matrix left, Matrix right)
{
Matrix result = { 0 };
result.m0 = left.m0 - right.m0;
result.m1 = left.m1 - right.m1;
result.m2 = left.m2 - right.m2;
result.m3 = left.m3 - right.m3;
result.m4 = left.m4 - right.m4;
result.m5 = left.m5 - right.m5;
result.m6 = left.m6 - right.m6;
result.m7 = left.m7 - right.m7;
result.m8 = left.m8 - right.m8;
result.m9 = left.m9 - right.m9;
result.m10 = left.m10 - right.m10;
result.m11 = left.m11 - right.m11;
result.m12 = left.m12 - right.m12;
result.m13 = left.m13 - right.m13;
result.m14 = left.m14 - right.m14;
result.m15 = left.m15 - right.m15;
return result;
}
// Get two matrix multiplication
// NOTE: When multiplying matrices... the order matters!
RMAPI Matrix MatrixMultiply(Matrix left, Matrix right)
{
Matrix result = { 0 };
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
return result;
}
// Get translation matrix
RMAPI Matrix MatrixTranslate(float x, float y, float z)
{
Matrix result = { 1.0f, 0.0f, 0.0f, x,
0.0f, 1.0f, 0.0f, y,
0.0f, 0.0f, 1.0f, z,
0.0f, 0.0f, 0.0f, 1.0f };
return result;
}
// Create rotation matrix from axis and angle
// NOTE: Angle should be provided in radians
RMAPI Matrix MatrixRotate(Vector3 axis, float angle)
{
Matrix result = { 0 };
float x = axis.x, y = axis.y, z = axis.z;
float lengthSquared = x*x + y*y + z*z;
if ((lengthSquared != 1.0f) && (lengthSquared != 0.0f))
{
float ilength = 1.0f/sqrtf(lengthSquared);
x *= ilength;
y *= ilength;
z *= ilength;
}
float sinres = sinf(angle);
float cosres = cosf(angle);
float t = 1.0f - cosres;
result.m0 = x*x*t + cosres;
result.m1 = y*x*t + z*sinres;
result.m2 = z*x*t - y*sinres;
result.m3 = 0.0f;
result.m4 = x*y*t - z*sinres;
result.m5 = y*y*t + cosres;
result.m6 = z*y*t + x*sinres;
result.m7 = 0.0f;
result.m8 = x*z*t + y*sinres;
result.m9 = y*z*t - x*sinres;
result.m10 = z*z*t + cosres;
result.m11 = 0.0f;
result.m12 = 0.0f;
result.m13 = 0.0f;
result.m14 = 0.0f;
result.m15 = 1.0f;
return result;
}
// Get x-rotation matrix
// NOTE: Angle must be provided in radians
RMAPI Matrix MatrixRotateX(float angle)
{
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
float cosres = cosf(angle);
float sinres = sinf(angle);
result.m5 = cosres;
result.m6 = sinres;
result.m9 = -sinres;
result.m10 = cosres;
return result;
}
// Get y-rotation matrix
// NOTE: Angle must be provided in radians
RMAPI Matrix MatrixRotateY(float angle)
{
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
float cosres = cosf(angle);
float sinres = sinf(angle);
result.m0 = cosres;
result.m2 = -sinres;
result.m8 = sinres;
result.m10 = cosres;
return result;
}
// Get z-rotation matrix
// NOTE: Angle must be provided in radians
RMAPI Matrix MatrixRotateZ(float angle)
{
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
float cosres = cosf(angle);
float sinres = sinf(angle);
result.m0 = cosres;
result.m1 = sinres;
result.m4 = -sinres;
result.m5 = cosres;
return result;
}
// Get xyz-rotation matrix
// NOTE: Angle must be provided in radians
RMAPI Matrix MatrixRotateXYZ(Vector3 angle)
{
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
float cosz = cosf(-angle.z);
float sinz = sinf(-angle.z);
float cosy = cosf(-angle.y);
float siny = sinf(-angle.y);
float cosx = cosf(-angle.x);
float sinx = sinf(-angle.x);
result.m0 = cosz*cosy;
result.m1 = (cosz*siny*sinx) - (sinz*cosx);
result.m2 = (cosz*siny*cosx) + (sinz*sinx);
result.m4 = sinz*cosy;
result.m5 = (sinz*siny*sinx) + (cosz*cosx);
result.m6 = (sinz*siny*cosx) - (cosz*sinx);
result.m8 = -siny;
result.m9 = cosy*sinx;
result.m10= cosy*cosx;
return result;
}
// Get zyx-rotation matrix
// NOTE: Angle must be provided in radians
RMAPI Matrix MatrixRotateZYX(Vector3 angle)
{
Matrix result = { 0 };
float cz = cosf(angle.z);
float sz = sinf(angle.z);
float cy = cosf(angle.y);
float sy = sinf(angle.y);
float cx = cosf(angle.x);
float sx = sinf(angle.x);
result.m0 = cz*cy;
result.m4 = cz*sy*sx - cx*sz;
result.m8 = sz*sx + cz*cx*sy;
result.m12 = 0;
result.m1 = cy*sz;
result.m5 = cz*cx + sz*sy*sx;
result.m9 = cx*sz*sy - cz*sx;
result.m13 = 0;
result.m2 = -sy;
result.m6 = cy*sx;
result.m10 = cy*cx;
result.m14 = 0;
result.m3 = 0;
result.m7 = 0;
result.m11 = 0;
result.m15 = 1;
return result;
}
// Get scaling matrix
RMAPI Matrix MatrixScale(float x, float y, float z)
{
Matrix result = { x, 0.0f, 0.0f, 0.0f,
0.0f, y, 0.0f, 0.0f,
0.0f, 0.0f, z, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f };
return result;
}
// Get perspective projection matrix
RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double nearPlane, double farPlane)
{
Matrix result = { 0 };
float rl = (float)(right - left);
float tb = (float)(top - bottom);
float fn = (float)(farPlane - nearPlane);
result.m0 = ((float)nearPlane*2.0f)/rl;
result.m1 = 0.0f;
result.m2 = 0.0f;
result.m3 = 0.0f;
result.m4 = 0.0f;
result.m5 = ((float)nearPlane*2.0f)/tb;
result.m6 = 0.0f;
result.m7 = 0.0f;
result.m8 = ((float)right + (float)left)/rl;
result.m9 = ((float)top + (float)bottom)/tb;
result.m10 = -((float)farPlane + (float)nearPlane)/fn;
result.m11 = -1.0f;
result.m12 = 0.0f;
result.m13 = 0.0f;
result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn;
result.m15 = 0.0f;
return result;
}
// Get perspective projection matrix
// NOTE: Fovy angle must be provided in radians
RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, double farPlane)
{
Matrix result = { 0 };
double top = nearPlane*tan(fovY*0.5);
double bottom = -top;
double right = top*aspect;
double left = -right;
// MatrixFrustum(-right, right, -top, top, near, far);
float rl = (float)(right - left);
float tb = (float)(top - bottom);
float fn = (float)(farPlane - nearPlane);
result.m0 = ((float)nearPlane*2.0f)/rl;
result.m5 = ((float)nearPlane*2.0f)/tb;
result.m8 = ((float)right + (float)left)/rl;
result.m9 = ((float)top + (float)bottom)/tb;
result.m10 = -((float)farPlane + (float)nearPlane)/fn;
result.m11 = -1.0f;
result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn;
return result;
}
// Get orthographic projection matrix
RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double nearPlane, double farPlane)
{
Matrix result = { 0 };
float rl = (float)(right - left);
float tb = (float)(top - bottom);
float fn = (float)(farPlane - nearPlane);
result.m0 = 2.0f/rl;
result.m1 = 0.0f;
result.m2 = 0.0f;
result.m3 = 0.0f;
result.m4 = 0.0f;
result.m5 = 2.0f/tb;
result.m6 = 0.0f;
result.m7 = 0.0f;
result.m8 = 0.0f;
result.m9 = 0.0f;
result.m10 = -2.0f/fn;
result.m11 = 0.0f;
result.m12 = -((float)left + (float)right)/rl;
result.m13 = -((float)top + (float)bottom)/tb;
result.m14 = -((float)farPlane + (float)nearPlane)/fn;
result.m15 = 1.0f;
return result;
}
// Get camera look-at matrix (view matrix)
RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
{
Matrix result = { 0 };
float length = 0.0f;
float ilength = 0.0f;
// Vector3Subtract(eye, target)
Vector3 vz = { eye.x - target.x, eye.y - target.y, eye.z - target.z };
// Vector3Normalize(vz)
Vector3 v = vz;
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
if (length == 0.0f) length = 1.0f;
ilength = 1.0f/length;
vz.x *= ilength;
vz.y *= ilength;
vz.z *= ilength;
// Vector3CrossProduct(up, vz)
Vector3 vx = { up.y*vz.z - up.z*vz.y, up.z*vz.x - up.x*vz.z, up.x*vz.y - up.y*vz.x };
// Vector3Normalize(x)
v = vx;
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
if (length == 0.0f) length = 1.0f;
ilength = 1.0f/length;
vx.x *= ilength;
vx.y *= ilength;
vx.z *= ilength;
// Vector3CrossProduct(vz, vx)
Vector3 vy = { vz.y*vx.z - vz.z*vx.y, vz.z*vx.x - vz.x*vx.z, vz.x*vx.y - vz.y*vx.x };
result.m0 = vx.x;
result.m1 = vy.x;
result.m2 = vz.x;
result.m3 = 0.0f;
result.m4 = vx.y;
result.m5 = vy.y;
result.m6 = vz.y;
result.m7 = 0.0f;
result.m8 = vx.z;
result.m9 = vy.z;
result.m10 = vz.z;
result.m11 = 0.0f;
result.m12 = -(vx.x*eye.x + vx.y*eye.y + vx.z*eye.z); // Vector3DotProduct(vx, eye)
result.m13 = -(vy.x*eye.x + vy.y*eye.y + vy.z*eye.z); // Vector3DotProduct(vy, eye)
result.m14 = -(vz.x*eye.x + vz.y*eye.y + vz.z*eye.z); // Vector3DotProduct(vz, eye)
result.m15 = 1.0f;
return result;
}
// Get float array of matrix data
RMAPI float16 MatrixToFloatV(Matrix mat)
{
float16 result = { 0 };
result.v[0] = mat.m0;
result.v[1] = mat.m1;
result.v[2] = mat.m2;
result.v[3] = mat.m3;
result.v[4] = mat.m4;
result.v[5] = mat.m5;
result.v[6] = mat.m6;
result.v[7] = mat.m7;
result.v[8] = mat.m8;
result.v[9] = mat.m9;
result.v[10] = mat.m10;
result.v[11] = mat.m11;
result.v[12] = mat.m12;
result.v[13] = mat.m13;
result.v[14] = mat.m14;
result.v[15] = mat.m15;
return result;
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Quaternion math
//----------------------------------------------------------------------------------
// Add two quaternions
RMAPI Quaternion QuaternionAdd(Quaternion q1, Quaternion q2)
{
Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w};
return result;
}
// Add quaternion and float value
RMAPI Quaternion QuaternionAddValue(Quaternion q, float add)
{
Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add};
return result;
}
// Subtract two quaternions
RMAPI Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2)
{
Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w};
return result;
}
// Subtract quaternion and float value
RMAPI Quaternion QuaternionSubtractValue(Quaternion q, float sub)
{
Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub};
return result;
}
// Get identity quaternion
RMAPI Quaternion QuaternionIdentity(void)
{
Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
return result;
}
// Computes the length of a quaternion
RMAPI float QuaternionLength(Quaternion q)
{
float result = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
return result;
}
// Normalize provided quaternion
RMAPI Quaternion QuaternionNormalize(Quaternion q)
{
Quaternion result = { 0 };
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
if (length == 0.0f) length = 1.0f;
float ilength = 1.0f/length;
result.x = q.x*ilength;
result.y = q.y*ilength;
result.z = q.z*ilength;
result.w = q.w*ilength;
return result;
}
// Invert provided quaternion
RMAPI Quaternion QuaternionInvert(Quaternion q)
{
Quaternion result = q;
float lengthSq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w;
if (lengthSq != 0.0f)
{
float invLength = 1.0f/lengthSq;
result.x *= -invLength;
result.y *= -invLength;
result.z *= -invLength;
result.w *= invLength;
}
return result;
}
// Calculate two quaternion multiplication
RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
{
Quaternion result = { 0 };
float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;
return result;
}
// Scale quaternion by float value
RMAPI Quaternion QuaternionScale(Quaternion q, float mul)
{
Quaternion result = { 0 };
result.x = q.x*mul;
result.y = q.y*mul;
result.z = q.z*mul;
result.w = q.w*mul;
return result;
}
// Divide two quaternions
RMAPI Quaternion QuaternionDivide(Quaternion q1, Quaternion q2)
{
Quaternion result = { q1.x/q2.x, q1.y/q2.y, q1.z/q2.z, q1.w/q2.w };
return result;
}
// Calculate linear interpolation between two quaternions
RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
{
Quaternion result = { 0 };
result.x = q1.x + amount*(q2.x - q1.x);
result.y = q1.y + amount*(q2.y - q1.y);
result.z = q1.z + amount*(q2.z - q1.z);
result.w = q1.w + amount*(q2.w - q1.w);
return result;
}
// Calculate slerp-optimized interpolation between two quaternions
RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
{
Quaternion result = { 0 };
// QuaternionLerp(q1, q2, amount)
result.x = q1.x + amount*(q2.x - q1.x);
result.y = q1.y + amount*(q2.y - q1.y);
result.z = q1.z + amount*(q2.z - q1.z);
result.w = q1.w + amount*(q2.w - q1.w);
// QuaternionNormalize(q);
Quaternion q = result;
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
if (length == 0.0f) length = 1.0f;
float ilength = 1.0f/length;
result.x = q.x*ilength;
result.y = q.y*ilength;
result.z = q.z*ilength;
result.w = q.w*ilength;
return result;
}
// Calculates spherical linear interpolation between two quaternions
RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
{
Quaternion result = { 0 };
#if !defined(EPSILON)
#define EPSILON 0.000001f
#endif
float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
if (cosHalfTheta < 0)
{
q2.x = -q2.x; q2.y = -q2.y; q2.z = -q2.z; q2.w = -q2.w;
cosHalfTheta = -cosHalfTheta;
}
if (fabsf(cosHalfTheta) >= 1.0f) result = q1;
else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
else
{
float halfTheta = acosf(cosHalfTheta);
float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta);
if (fabsf(sinHalfTheta) < EPSILON)
{
result.x = (q1.x*0.5f + q2.x*0.5f);
result.y = (q1.y*0.5f + q2.y*0.5f);
result.z = (q1.z*0.5f + q2.z*0.5f);
result.w = (q1.w*0.5f + q2.w*0.5f);
}
else
{
float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta;
float ratioB = sinf(amount*halfTheta)/sinHalfTheta;
result.x = (q1.x*ratioA + q2.x*ratioB);
result.y = (q1.y*ratioA + q2.y*ratioB);
result.z = (q1.z*ratioA + q2.z*ratioB);
result.w = (q1.w*ratioA + q2.w*ratioB);
}
}
return result;
}
// Calculate quaternion cubic spline interpolation using Cubic Hermite Spline algorithm
// as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
RMAPI Quaternion QuaternionCubicHermiteSpline(Quaternion q1, Quaternion outTangent1, Quaternion q2, Quaternion inTangent2, float t)
{
float t2 = t*t;
float t3 = t2*t;
float h00 = 2*t3 - 3*t2 + 1;
float h10 = t3 - 2*t2 + t;
float h01 = -2*t3 + 3*t2;
float h11 = t3 - t2;
Quaternion p0 = QuaternionScale(q1, h00);
Quaternion m0 = QuaternionScale(outTangent1, h10);
Quaternion p1 = QuaternionScale(q2, h01);
Quaternion m1 = QuaternionScale(inTangent2, h11);
Quaternion result = { 0 };
result = QuaternionAdd(p0, m0);
result = QuaternionAdd(result, p1);
result = QuaternionAdd(result, m1);
result = QuaternionNormalize(result);
return result;
}
// Calculate quaternion based on the rotation from one vector to another
RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
{
Quaternion result = { 0 };
float cos2Theta = (from.x*to.x + from.y*to.y + from.z*to.z); // Vector3DotProduct(from, to)
Vector3 cross = { from.y*to.z - from.z*to.y, from.z*to.x - from.x*to.z, from.x*to.y - from.y*to.x }; // Vector3CrossProduct(from, to)
result.x = cross.x;
result.y = cross.y;
result.z = cross.z;
result.w = 1.0f + cos2Theta;
// QuaternionNormalize(q);
// NOTE: Normalize to essentially nlerp the original and identity to 0.5
Quaternion q = result;
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
if (length == 0.0f) length = 1.0f;
float ilength = 1.0f/length;
result.x = q.x*ilength;
result.y = q.y*ilength;
result.z = q.z*ilength;
result.w = q.w*ilength;
return result;
}
// Get a quaternion for a given rotation matrix
RMAPI Quaternion QuaternionFromMatrix(Matrix mat)
{
Quaternion result = { 0 };
float fourWSquaredMinus1 = mat.m0 + mat.m5 + mat.m10;
float fourXSquaredMinus1 = mat.m0 - mat.m5 - mat.m10;
float fourYSquaredMinus1 = mat.m5 - mat.m0 - mat.m10;
float fourZSquaredMinus1 = mat.m10 - mat.m0 - mat.m5;
int biggestIndex = 0;
float fourBiggestSquaredMinus1 = fourWSquaredMinus1;
if (fourXSquaredMinus1 > fourBiggestSquaredMinus1)
{
fourBiggestSquaredMinus1 = fourXSquaredMinus1;
biggestIndex = 1;
}
if (fourYSquaredMinus1 > fourBiggestSquaredMinus1)
{
fourBiggestSquaredMinus1 = fourYSquaredMinus1;
biggestIndex = 2;
}
if (fourZSquaredMinus1 > fourBiggestSquaredMinus1)
{
fourBiggestSquaredMinus1 = fourZSquaredMinus1;
biggestIndex = 3;
}
float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f)*0.5f;
float mult = 0.25f/biggestVal;
switch (biggestIndex)
{
case 0:
result.w = biggestVal;
result.x = (mat.m6 - mat.m9)*mult;
result.y = (mat.m8 - mat.m2)*mult;
result.z = (mat.m1 - mat.m4)*mult;
break;
case 1:
result.x = biggestVal;
result.w = (mat.m6 - mat.m9)*mult;
result.y = (mat.m1 + mat.m4)*mult;
result.z = (mat.m8 + mat.m2)*mult;
break;
case 2:
result.y = biggestVal;
result.w = (mat.m8 - mat.m2)*mult;
result.x = (mat.m1 + mat.m4)*mult;
result.z = (mat.m6 + mat.m9)*mult;
break;
case 3:
result.z = biggestVal;
result.w = (mat.m1 - mat.m4)*mult;
result.x = (mat.m8 + mat.m2)*mult;
result.y = (mat.m6 + mat.m9)*mult;
break;
}
return result;
}
// Get a matrix for a given quaternion
RMAPI Matrix QuaternionToMatrix(Quaternion q)
{
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
float a2 = q.x*q.x;
float b2 = q.y*q.y;
float c2 = q.z*q.z;
float ac = q.x*q.z;
float ab = q.x*q.y;
float bc = q.y*q.z;
float ad = q.w*q.x;
float bd = q.w*q.y;
float cd = q.w*q.z;
result.m0 = 1 - 2*(b2 + c2);
result.m1 = 2*(ab + cd);
result.m2 = 2*(ac - bd);
result.m4 = 2*(ab - cd);
result.m5 = 1 - 2*(a2 + c2);
result.m6 = 2*(bc + ad);
result.m8 = 2*(ac + bd);
result.m9 = 2*(bc - ad);
result.m10 = 1 - 2*(a2 + b2);
return result;
}
// Get rotation quaternion for an angle and axis
// NOTE: Angle must be provided in radians
RMAPI Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
{
Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
float axisLength = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);
if (axisLength != 0.0f)
{
angle *= 0.5f;
float length = 0.0f;
float ilength = 0.0f;
// Vector3Normalize(axis)
length = axisLength;
if (length == 0.0f) length = 1.0f;
ilength = 1.0f/length;
axis.x *= ilength;
axis.y *= ilength;
axis.z *= ilength;
float sinres = sinf(angle);
float cosres = cosf(angle);
result.x = axis.x*sinres;
result.y = axis.y*sinres;
result.z = axis.z*sinres;
result.w = cosres;
// QuaternionNormalize(q);
Quaternion q = result;
length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
if (length == 0.0f) length = 1.0f;
ilength = 1.0f/length;
result.x = q.x*ilength;
result.y = q.y*ilength;
result.z = q.z*ilength;
result.w = q.w*ilength;
}
return result;
}
// Get the rotation angle and axis for a given quaternion
RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
{
if (fabsf(q.w) > 1.0f)
{
// QuaternionNormalize(q);
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
if (length == 0.0f) length = 1.0f;
float ilength = 1.0f/length;
q.x = q.x*ilength;
q.y = q.y*ilength;
q.z = q.z*ilength;
q.w = q.w*ilength;
}
Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
float resAngle = 2.0f*acosf(q.w);
float den = sqrtf(1.0f - q.w*q.w);
if (den > EPSILON)
{
resAxis.x = q.x/den;
resAxis.y = q.y/den;
resAxis.z = q.z/den;
}
else
{
// This occurs when the angle is zero.
// Not a problem: just set an arbitrary normalized axis.
resAxis.x = 1.0f;
}
*outAxis = resAxis;
*outAngle = resAngle;
}
// Get the quaternion equivalent to Euler angles
// NOTE: Rotation order is ZYX
RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll)
{
Quaternion result = { 0 };
float x0 = cosf(pitch*0.5f);
float x1 = sinf(pitch*0.5f);
float y0 = cosf(yaw*0.5f);
float y1 = sinf(yaw*0.5f);
float z0 = cosf(roll*0.5f);
float z1 = sinf(roll*0.5f);
result.x = x1*y0*z0 - x0*y1*z1;
result.y = x0*y1*z0 + x1*y0*z1;
result.z = x0*y0*z1 - x1*y1*z0;
result.w = x0*y0*z0 + x1*y1*z1;
return result;
}
// Get the Euler angles equivalent to quaternion (roll, pitch, yaw)
// NOTE: Angles are returned in a Vector3 struct in radians
RMAPI Vector3 QuaternionToEuler(Quaternion q)
{
Vector3 result = { 0 };
// Roll (x-axis rotation)
float x0 = 2.0f*(q.w*q.x + q.y*q.z);
float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
result.x = atan2f(x0, x1);
// Pitch (y-axis rotation)
float y0 = 2.0f*(q.w*q.y - q.z*q.x);
y0 = y0 > 1.0f ? 1.0f : y0;
y0 = y0 < -1.0f ? -1.0f : y0;
result.y = asinf(y0);
// Yaw (z-axis rotation)
float z0 = 2.0f*(q.w*q.z + q.x*q.y);
float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
result.z = atan2f(z0, z1);
return result;
}
// Transform a quaternion given a transformation matrix
RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat)
{
Quaternion result = { 0 };
result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w;
result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;
return result;
}
// Check whether two given quaternions are almost equal
RMAPI int QuaternionEquals(Quaternion p, Quaternion q)
{
#if !defined(EPSILON)
#define EPSILON 0.000001f
#endif
int result = (((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))) ||
(((fabsf(p.x + q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
((fabsf(p.y + q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
((fabsf(p.z + q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
((fabsf(p.w + q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w))))));
return result;
}
// Decompose a transformation matrix into its rotational, translational and scaling components
RMAPI void MatrixDecompose(Matrix mat, Vector3 *translation, Quaternion *rotation, Vector3 *scale)
{
// Extract translation.
translation->x = mat.m12;
translation->y = mat.m13;
translation->z = mat.m14;
// Extract upper-left for determinant computation
const float a = mat.m0;
const float b = mat.m4;
const float c = mat.m8;
const float d = mat.m1;
const float e = mat.m5;
const float f = mat.m9;
const float g = mat.m2;
const float h = mat.m6;
const float i = mat.m10;
const float A = e*i - f*h;
const float B = f*g - d*i;
const float C = d*h - e*g;
// Extract scale
const float det = a*A + b*B + c*C;
Vector3 abc = { a, b, c };
Vector3 def = { d, e, f };
Vector3 ghi = { g, h, i };
float scalex = Vector3Length(abc);
float scaley = Vector3Length(def);
float scalez = Vector3Length(ghi);
Vector3 s = { scalex, scaley, scalez };
if (det < 0) s = Vector3Negate(s);
*scale = s;
// Remove scale from the matrix if it is not close to zero
Matrix clone = mat;
if (!FloatEquals(det, 0))
{
clone.m0 /= s.x;
clone.m4 /= s.x;
clone.m8 /= s.x;
clone.m1 /= s.y;
clone.m5 /= s.y;
clone.m9 /= s.y;
clone.m2 /= s.z;
clone.m6 /= s.z;
clone.m10 /= s.z;
// Extract rotation
*rotation = QuaternionFromMatrix(clone);
}
else
{
// Set to identity if close to zero
*rotation = QuaternionIdentity();
}
}
#if defined(__cplusplus) && !defined(RAYMATH_DISABLE_CPP_OPERATORS)
// Optional C++ math operators
//-------------------------------------------------------------------------------
// Vector2 operators
static constexpr Vector2 Vector2Zeros = { 0, 0 };
static constexpr Vector2 Vector2Ones = { 1, 1 };
static constexpr Vector2 Vector2UnitX = { 1, 0 };
static constexpr Vector2 Vector2UnitY = { 0, 1 };
inline Vector2 operator + (const Vector2& lhs, const Vector2& rhs)
{
return Vector2Add(lhs, rhs);
}
inline const Vector2& operator += (Vector2& lhs, const Vector2& rhs)
{
lhs = Vector2Add(lhs, rhs);
return lhs;
}
inline Vector2 operator - (const Vector2& lhs, const Vector2& rhs)
{
return Vector2Subtract(lhs, rhs);
}
inline const Vector2& operator -= (Vector2& lhs, const Vector2& rhs)
{
lhs = Vector2Subtract(lhs, rhs);
return lhs;
}
inline Vector2 operator * (const Vector2& lhs, const float& rhs)
{
return Vector2Scale(lhs, rhs);
}
inline const Vector2& operator *= (Vector2& lhs, const float& rhs)
{
lhs = Vector2Scale(lhs, rhs);
return lhs;
}
inline Vector2 operator * (const Vector2& lhs, const Vector2& rhs)
{
return Vector2Multiply(lhs, rhs);
}
inline const Vector2& operator *= (Vector2& lhs, const Vector2& rhs)
{
lhs = Vector2Multiply(lhs, rhs);
return lhs;
}
inline Vector2 operator * (const Vector2& lhs, const Matrix& rhs)
{
return Vector2Transform(lhs, rhs);
}
inline const Vector2& operator *= (Vector2& lhs, const Matrix& rhs)
{
lhs = Vector2Transform(lhs, rhs);
return lhs;
}
inline Vector2 operator / (const Vector2& lhs, const float& rhs)
{
return Vector2Scale(lhs, 1.0f / rhs);
}
inline const Vector2& operator /= (Vector2& lhs, const float& rhs)
{
lhs = Vector2Scale(lhs, 1.0f / rhs);
return lhs;
}
inline Vector2 operator / (const Vector2& lhs, const Vector2& rhs)
{
return Vector2Divide(lhs, rhs);
}
inline const Vector2& operator /= (Vector2& lhs, const Vector2& rhs)
{
lhs = Vector2Divide(lhs, rhs);
return lhs;
}
inline bool operator == (const Vector2& lhs, const Vector2& rhs)
{
return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y);
}
inline bool operator != (const Vector2& lhs, const Vector2& rhs)
{
return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y);
}
// Vector3 operators
static constexpr Vector3 Vector3Zeros = { 0, 0, 0 };
static constexpr Vector3 Vector3Ones = { 1, 1, 1 };
static constexpr Vector3 Vector3UnitX = { 1, 0, 0 };
static constexpr Vector3 Vector3UnitY = { 0, 1, 0 };
static constexpr Vector3 Vector3UnitZ = { 0, 0, 1 };
inline Vector3 operator + (const Vector3& lhs, const Vector3& rhs)
{
return Vector3Add(lhs, rhs);
}
inline const Vector3& operator += (Vector3& lhs, const Vector3& rhs)
{
lhs = Vector3Add(lhs, rhs);
return lhs;
}
inline Vector3 operator - (const Vector3& lhs, const Vector3& rhs)
{
return Vector3Subtract(lhs, rhs);
}
inline const Vector3& operator -= (Vector3& lhs, const Vector3& rhs)
{
lhs = Vector3Subtract(lhs, rhs);
return lhs;
}
inline Vector3 operator * (const Vector3& lhs, const float& rhs)
{
return Vector3Scale(lhs, rhs);
}
inline const Vector3& operator *= (Vector3& lhs, const float& rhs)
{
lhs = Vector3Scale(lhs, rhs);
return lhs;
}
inline Vector3 operator * (const Vector3& lhs, const Vector3& rhs)
{
return Vector3Multiply(lhs, rhs);
}
inline const Vector3& operator *= (Vector3& lhs, const Vector3& rhs)
{
lhs = Vector3Multiply(lhs, rhs);
return lhs;
}
inline Vector3 operator * (const Vector3& lhs, const Matrix& rhs)
{
return Vector3Transform(lhs, rhs);
}
inline const Vector3& operator *= (Vector3& lhs, const Matrix& rhs)
{
lhs = Vector3Transform(lhs, rhs);
return lhs;
}
inline Vector3 operator / (const Vector3& lhs, const float& rhs)
{
return Vector3Scale(lhs, 1.0f / rhs);
}
inline const Vector3& operator /= (Vector3& lhs, const float& rhs)
{
lhs = Vector3Scale(lhs, 1.0f / rhs);
return lhs;
}
inline Vector3 operator / (const Vector3& lhs, const Vector3& rhs)
{
return Vector3Divide(lhs, rhs);
}
inline const Vector3& operator /= (Vector3& lhs, const Vector3& rhs)
{
lhs = Vector3Divide(lhs, rhs);
return lhs;
}
inline bool operator == (const Vector3& lhs, const Vector3& rhs)
{
return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y) && FloatEquals(lhs.z, rhs.z);
}
inline bool operator != (const Vector3& lhs, const Vector3& rhs)
{
return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y) || !FloatEquals(lhs.z, rhs.z);
}
// Vector4 operators
static constexpr Vector4 Vector4Zeros = { 0, 0, 0, 0 };
static constexpr Vector4 Vector4Ones = { 1, 1, 1, 1 };
static constexpr Vector4 Vector4UnitX = { 1, 0, 0, 0 };
static constexpr Vector4 Vector4UnitY = { 0, 1, 0, 0 };
static constexpr Vector4 Vector4UnitZ = { 0, 0, 1, 0 };
static constexpr Vector4 Vector4UnitW = { 0, 0, 0, 1 };
inline Vector4 operator + (const Vector4& lhs, const Vector4& rhs)
{
return Vector4Add(lhs, rhs);
}
inline const Vector4& operator += (Vector4& lhs, const Vector4& rhs)
{
lhs = Vector4Add(lhs, rhs);
return lhs;
}
inline Vector4 operator - (const Vector4& lhs, const Vector4& rhs)
{
return Vector4Subtract(lhs, rhs);
}
inline const Vector4& operator -= (Vector4& lhs, const Vector4& rhs)
{
lhs = Vector4Subtract(lhs, rhs);
return lhs;
}
inline Vector4 operator * (const Vector4& lhs, const float& rhs)
{
return Vector4Scale(lhs, rhs);
}
inline const Vector4& operator *= (Vector4& lhs, const float& rhs)
{
lhs = Vector4Scale(lhs, rhs);
return lhs;
}
inline Vector4 operator * (const Vector4& lhs, const Vector4& rhs)
{
return Vector4Multiply(lhs, rhs);
}
inline const Vector4& operator *= (Vector4& lhs, const Vector4& rhs)
{
lhs = Vector4Multiply(lhs, rhs);
return lhs;
}
inline Vector4 operator / (const Vector4& lhs, const float& rhs)
{
return Vector4Scale(lhs, 1.0f / rhs);
}
inline const Vector4& operator /= (Vector4& lhs, const float& rhs)
{
lhs = Vector4Scale(lhs, 1.0f / rhs);
return lhs;
}
inline Vector4 operator / (const Vector4& lhs, const Vector4& rhs)
{
return Vector4Divide(lhs, rhs);
}
inline const Vector4& operator /= (Vector4& lhs, const Vector4& rhs)
{
lhs = Vector4Divide(lhs, rhs);
return lhs;
}
inline bool operator == (const Vector4& lhs, const Vector4& rhs)
{
return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y) && FloatEquals(lhs.z, rhs.z) && FloatEquals(lhs.w, rhs.w);
}
inline bool operator != (const Vector4& lhs, const Vector4& rhs)
{
return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y) || !FloatEquals(lhs.z, rhs.z) || !FloatEquals(lhs.w, rhs.w);
}
// Quaternion operators
static constexpr Quaternion QuaternionZeros = { 0, 0, 0, 0 };
static constexpr Quaternion QuaternionOnes = { 1, 1, 1, 1 };
static constexpr Quaternion QuaternionUnitX = { 0, 0, 0, 1 };
inline Quaternion operator + (const Quaternion& lhs, const float& rhs)
{
return QuaternionAddValue(lhs, rhs);
}
inline const Quaternion& operator += (Quaternion& lhs, const float& rhs)
{
lhs = QuaternionAddValue(lhs, rhs);
return lhs;
}
inline Quaternion operator - (const Quaternion& lhs, const float& rhs)
{
return QuaternionSubtractValue(lhs, rhs);
}
inline const Quaternion& operator -= (Quaternion& lhs, const float& rhs)
{
lhs = QuaternionSubtractValue(lhs, rhs);
return lhs;
}
inline Quaternion operator * (const Quaternion& lhs, const Matrix& rhs)
{
return QuaternionTransform(lhs, rhs);
}
inline const Quaternion& operator *= (Quaternion& lhs, const Matrix& rhs)
{
lhs = QuaternionTransform(lhs, rhs);
return lhs;
}
// Matrix operators
inline Matrix operator + (const Matrix& lhs, const Matrix& rhs)
{
return MatrixAdd(lhs, rhs);
}
inline const Matrix& operator += (Matrix& lhs, const Matrix& rhs)
{
lhs = MatrixAdd(lhs, rhs);
return lhs;
}
inline Matrix operator - (const Matrix& lhs, const Matrix& rhs)
{
return MatrixSubtract(lhs, rhs);
}
inline const Matrix& operator -= (Matrix& lhs, const Matrix& rhs)
{
lhs = MatrixSubtract(lhs, rhs);
return lhs;
}
inline Matrix operator * (const Matrix& lhs, const Matrix& rhs)
{
return MatrixMultiply(lhs, rhs);
}
inline const Matrix& operator *= (Matrix& lhs, const Matrix& rhs)
{
lhs = MatrixMultiply(lhs, rhs);
return lhs;
}
//-------------------------------------------------------------------------------
#endif // C++ operators
#endif // RAYMATH_H