openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

262 lines
10 KiB

#include <algorithm>
#include <filesystem>
#include <fstream>
#include <map>
#include <regex>
#include <set>
#include <sstream>
#include <vector>
#include <mutex>
#include <iterator>
#include <cstring>
#include <clocale>
#include "opendbc/can/common.h"
#include "opendbc/can/common_dbc.h"
std::regex bo_regexp(R"(^BO_ (\w+) (\w+) *: (\w+) (\w+))");
std::regex sg_regexp(R"(^SG_ (\w+) : (\d+)\|(\d+)@(\d+)([\+|\-]) \(([0-9.+\-eE]+),([0-9.+\-eE]+)\) \[([0-9.+\-eE]+)\|([0-9.+\-eE]+)\] \"(.*)\" (.*))");
std::regex sgm_regexp(R"(^SG_ (\w+) (\w+) *: (\d+)\|(\d+)@(\d+)([\+|\-]) \(([0-9.+\-eE]+),([0-9.+\-eE]+)\) \[([0-9.+\-eE]+)\|([0-9.+\-eE]+)\] \"(.*)\" (.*))");
std::regex val_regexp(R"(VAL_ (\w+) (\w+) (\s*[-+]?[0-9]+\s+\".+?\"[^;]*))");
std::regex val_split_regexp{R"([\"]+)"}; // split on "
#define DBC_ASSERT(condition, message) \
do { \
if (!(condition)) { \
std::stringstream is; \
is << "[" << dbc_name << ":" << line_num << "] " << message; \
throw std::runtime_error(is.str()); \
} \
} while (false)
inline bool startswith(const std::string& str, const char* prefix) {
return str.find(prefix, 0) == 0;
}
inline bool startswith(const std::string& str, std::initializer_list<const char*> prefix_list) {
for (auto prefix : prefix_list) {
if (startswith(str, prefix)) return true;
}
return false;
}
inline bool endswith(const std::string& str, const char* suffix) {
return str.find(suffix, 0) == (str.length() - strlen(suffix));
}
inline std::string& trim(std::string& s, const char* t = " \t\n\r\f\v") {
s.erase(s.find_last_not_of(t) + 1);
return s.erase(0, s.find_first_not_of(t));
}
ChecksumState* get_checksum(const std::string& dbc_name) {
ChecksumState* s = nullptr;
if (startswith(dbc_name, {"honda_", "acura_"})) {
s = new ChecksumState({4, 2, 3, 5, false, HONDA_CHECKSUM, &honda_checksum});
} else if (startswith(dbc_name, {"toyota_", "lexus_"})) {
s = new ChecksumState({8, -1, 7, -1, false, TOYOTA_CHECKSUM, &toyota_checksum});
} else if (startswith(dbc_name, "hyundai_canfd_generated")) {
s = new ChecksumState({16, -1, 0, -1, true, HKG_CAN_FD_CHECKSUM, &hkg_can_fd_checksum});
} else if (startswith(dbc_name, {"vw_mqb", "vw_mqbevo", "vw_meb"})) {
s = new ChecksumState({8, 4, 0, 0, true, VOLKSWAGEN_MQB_MEB_CHECKSUM, &volkswagen_mqb_meb_checksum});
} else if (startswith(dbc_name, "vw_pq")) {
s = new ChecksumState({8, 4, 0, -1, true, XOR_CHECKSUM, &xor_checksum});
} else if (startswith(dbc_name, "subaru_global_")) {
s = new ChecksumState({8, -1, 0, -1, true, SUBARU_CHECKSUM, &subaru_checksum});
} else if (startswith(dbc_name, "chrysler_")) {
s = new ChecksumState({8, -1, 7, -1, false, CHRYSLER_CHECKSUM, &chrysler_checksum});
} else if (startswith(dbc_name, "fca_giorgio")) {
s = new ChecksumState({8, -1, 7, -1, false, FCA_GIORGIO_CHECKSUM, &fca_giorgio_checksum});
} else if (startswith(dbc_name, "comma_body")) {
s = new ChecksumState({8, 4, 7, 3, false, PEDAL_CHECKSUM, &pedal_checksum});
}
return s;
}
void set_signal_type(Signal& s, ChecksumState* chk, const std::string& dbc_name, int line_num) {
s.calc_checksum = nullptr;
if (chk) {
if (s.name == "CHECKSUM") {
DBC_ASSERT(chk->checksum_size == -1 || s.size == chk->checksum_size, "CHECKSUM is not " << chk->checksum_size << " bits long");
DBC_ASSERT(chk->checksum_start_bit == -1 || (s.start_bit % 8) == chk->checksum_start_bit, " CHECKSUM starts at wrong bit");
DBC_ASSERT(s.is_little_endian == chk->little_endian, "CHECKSUM has wrong endianness");
DBC_ASSERT(chk->calc_checksum != nullptr, "CHECKSUM calculate function not supplied");
s.type = chk->checksum_type;
s.calc_checksum = chk->calc_checksum;
} else if (s.name == "COUNTER") {
DBC_ASSERT(chk->counter_size == -1 || s.size == chk->counter_size, "COUNTER is not " << chk->counter_size << " bits long");
DBC_ASSERT(chk->counter_start_bit == -1 || (s.start_bit % 8) == chk->counter_start_bit, "COUNTER starts at wrong bit");
DBC_ASSERT(chk->little_endian == s.is_little_endian, "COUNTER has wrong endianness");
s.type = COUNTER;
}
}
// TODO: CAN packer/parser shouldn't know anything about interceptors or pedals
if (s.name == "CHECKSUM_PEDAL") {
DBC_ASSERT(s.size == 8, "INTERCEPTOR CHECKSUM is not 8 bits long");
s.type = PEDAL_CHECKSUM;
} else if (s.name == "COUNTER_PEDAL") {
DBC_ASSERT(s.size == 4, "INTERCEPTOR COUNTER is not 4 bits long");
s.type = COUNTER;
}
}
DBC* dbc_parse_from_stream(const std::string &dbc_name, std::istream &stream, ChecksumState *checksum, bool allow_duplicate_msg_name) {
uint32_t address = 0;
std::set<uint32_t> address_set;
std::set<std::string> msg_name_set;
std::map<uint32_t, std::set<std::string>> signal_name_sets;
std::map<uint32_t, std::vector<Signal>> signals;
DBC* dbc = new DBC;
dbc->name = dbc_name;
std::setlocale(LC_NUMERIC, "C");
// used to find big endian LSB from MSB and size
std::vector<int> be_bits;
for (int i = 0; i < 64; i++) {
for (int j = 7; j >= 0; j--) {
be_bits.push_back(j + i * 8);
}
}
std::string line;
int line_num = 0;
std::smatch match;
// TODO: see if we can speed up the regex statements in this loop, SG_ is specifically the slowest
while (std::getline(stream, line)) {
line = trim(line);
line_num += 1;
if (startswith(line, "BO_ ")) {
// new group
bool ret = std::regex_match(line, match, bo_regexp);
DBC_ASSERT(ret, "bad BO: " << line);
Msg& msg = dbc->msgs.emplace_back();
address = msg.address = std::stoul(match[1].str()); // could be hex
msg.name = match[2].str();
msg.size = std::stoul(match[3].str());
// check for duplicates
DBC_ASSERT(address_set.find(address) == address_set.end(), "Duplicate message address: " << address << " (" << msg.name << ")");
address_set.insert(address);
if (!allow_duplicate_msg_name) {
DBC_ASSERT(msg_name_set.find(msg.name) == msg_name_set.end(), "Duplicate message name: " << msg.name);
msg_name_set.insert(msg.name);
}
} else if (startswith(line, "SG_ ")) {
// new signal
int offset = 0;
if (!std::regex_search(line, match, sg_regexp)) {
bool ret = std::regex_search(line, match, sgm_regexp);
DBC_ASSERT(ret, "bad SG: " << line);
offset = 1;
}
Signal& sig = signals[address].emplace_back();
sig.name = match[1].str();
sig.start_bit = std::stoi(match[offset + 2].str());
sig.size = std::stoi(match[offset + 3].str());
sig.is_little_endian = std::stoi(match[offset + 4].str()) == 1;
sig.is_signed = match[offset + 5].str() == "-";
sig.factor = std::stod(match[offset + 6].str());
sig.offset = std::stod(match[offset + 7].str());
set_signal_type(sig, checksum, dbc_name, line_num);
if (sig.is_little_endian) {
sig.lsb = sig.start_bit;
sig.msb = sig.start_bit + sig.size - 1;
} else {
auto it = find(be_bits.begin(), be_bits.end(), sig.start_bit);
sig.lsb = be_bits[(it - be_bits.begin()) + sig.size - 1];
sig.msb = sig.start_bit;
}
DBC_ASSERT(sig.lsb < (64 * 8) && sig.msb < (64 * 8), "Signal out of bounds: " << line);
// Check for duplicate signal names
DBC_ASSERT(signal_name_sets[address].find(sig.name) == signal_name_sets[address].end(), "Duplicate signal name: " << sig.name);
signal_name_sets[address].insert(sig.name);
} else if (startswith(line, "VAL_ ")) {
// new signal value/definition
bool ret = std::regex_search(line, match, val_regexp);
DBC_ASSERT(ret, "bad VAL: " << line);
auto& val = dbc->vals.emplace_back();
val.address = std::stoul(match[1].str()); // could be hex
val.name = match[2].str();
auto defvals = match[3].str();
std::sregex_token_iterator it{defvals.begin(), defvals.end(), val_split_regexp, -1};
// convert strings to UPPER_CASE_WITH_UNDERSCORES
std::vector<std::string> words{it, {}};
for (auto& w : words) {
w = trim(w);
std::transform(w.begin(), w.end(), w.begin(), ::toupper);
std::replace(w.begin(), w.end(), ' ', '_');
}
// join string
std::stringstream s;
std::copy(words.begin(), words.end(), std::ostream_iterator<std::string>(s, " "));
val.def_val = s.str();
val.def_val = trim(val.def_val);
}
}
for (auto& m : dbc->msgs) {
m.sigs = signals[m.address];
dbc->addr_to_msg[m.address] = &m;
dbc->name_to_msg[m.name] = &m;
}
for (auto& v : dbc->vals) {
v.sigs = signals[v.address];
}
return dbc;
}
DBC* dbc_parse(const std::string& dbc_path) {
std::ifstream infile(dbc_path);
if (!infile) return nullptr;
const std::string dbc_name = std::filesystem::path(dbc_path).filename();
std::unique_ptr<ChecksumState> checksum(get_checksum(dbc_name));
return dbc_parse_from_stream(dbc_name, infile, checksum.get());
}
const std::string get_dbc_root_path() {
char *basedir = std::getenv("BASEDIR");
if (basedir != NULL) {
return std::string(basedir) + "/opendbc/dbc";
} else {
return DBC_FILE_PATH;
}
}
const DBC* dbc_lookup(const std::string& dbc_name) {
static std::mutex lock;
static std::map<std::string, DBC*> dbcs;
std::string dbc_file_path = dbc_name;
if (!std::filesystem::exists(dbc_file_path)) {
dbc_file_path = get_dbc_root_path() + "/" + dbc_name + ".dbc";
}
std::unique_lock lk(lock);
auto it = dbcs.find(dbc_name);
if (it == dbcs.end()) {
it = dbcs.insert(it, {dbc_name, dbc_parse(dbc_file_path)});
}
return it->second;
}
std::vector<std::string> get_dbc_names() {
static const std::string& dbc_file_path = get_dbc_root_path();
std::vector<std::string> dbcs;
for (std::filesystem::directory_iterator i(dbc_file_path), end; i != end; i++) {
if (!is_directory(i->path())) {
std::string filename = i->path().filename();
if (!startswith(filename, "_") && endswith(filename, ".dbc")) {
dbcs.push_back(filename.substr(0, filename.length() - 4));
}
}
}
return dbcs;
}