openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

82 lines
2.2 KiB

import pytest
import os
import numpy as np
from .kinematic_kf import KinematicKalman, ObservationKind, States
GENERATED_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), 'generated'))
class TestKinematic:
def test_kinematic_kf(self):
np.random.seed(0)
kf = KinematicKalman(GENERATED_DIR)
# Simple simulation
dt = 0.01
ts = np.arange(0, 5, step=dt)
vs = np.sin(ts * 5)
x = 0.0
xs = []
xs_meas = []
xs_kf = []
vs_kf = []
xs_kf_std = []
vs_kf_std = []
for t, v in zip(ts, vs):
xs.append(x)
# Update kf
meas = np.random.normal(x, 0.1)
xs_meas.append(meas)
kf.predict_and_observe(t, ObservationKind.POSITION, [meas])
# Retrieve kf values
state = kf.x
xs_kf.append(float(state[States.POSITION].item()))
vs_kf.append(float(state[States.VELOCITY].item()))
std = np.sqrt(kf.P)
xs_kf_std.append(float(std[States.POSITION, States.POSITION].item()))
vs_kf_std.append(float(std[States.VELOCITY, States.VELOCITY].item()))
# Update simulation
x += v * dt
xs, xs_meas, xs_kf, vs_kf, xs_kf_std, vs_kf_std = (np.asarray(a) for a in (xs, xs_meas, xs_kf, vs_kf, xs_kf_std, vs_kf_std))
assert xs_kf[-1] == pytest.approx(-0.010866289677966417)
assert xs_kf_std[-1] == pytest.approx(0.04477103863330089)
assert vs_kf[-1] == pytest.approx(-0.8553720537261753)
assert vs_kf_std[-1] == pytest.approx(0.6695762270974388)
if "PLOT" in os.environ:
import matplotlib.pyplot as plt # pylint: disable=import-error
plt.figure()
plt.subplot(2, 1, 1)
plt.plot(ts, xs, 'k', label='Simulation')
plt.plot(ts, xs_meas, 'k.', label='Measurements')
plt.plot(ts, xs_kf, label='KF')
ax = plt.gca()
ax.fill_between(ts, xs_kf - xs_kf_std, xs_kf + xs_kf_std, alpha=.2, color='C0')
plt.xlabel("Time [s]")
plt.ylabel("Position [m]")
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(ts, vs, 'k', label='Simulation')
plt.plot(ts, vs_kf, label='KF')
ax = plt.gca()
ax.fill_between(ts, vs_kf - vs_kf_std, vs_kf + vs_kf_std, alpha=.2, color='C0')
plt.xlabel("Time [s]")
plt.ylabel("Velocity [m/s]")
plt.legend()
plt.show()