openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

297 lines
12 KiB

from collections import OrderedDict
import unicodedata
from typing import Optional
import math
import numpy as np
from tinygrad.nn import state
from tinygrad.tensor import Tensor, dtypes
from tinygrad.helpers import getenv
#
# checkpointing utils
#
def invert_dict(d): return {v: k for k, v in reversed(d.items())}
def dedup_dict(d): return invert_dict(invert_dict(d))
# store each tensor into the first key it appears in
def get_training_state(model, optimizer, scheduler):
# hack: let get_state_dict walk the tree starting with model, so that the checkpoint keys are
# readable and can be loaded as a model for eval
train_state = {'model': model, 'optimizer': optimizer, 'scheduler': scheduler}
return dedup_dict(state.get_state_dict(train_state))
def load_training_state(model, optimizer, scheduler, state_dict):
# use fresh model to restore duplicate keys
train_state = {'model': model, 'optimizer': optimizer, 'scheduler': scheduler}
big_dict = state.get_state_dict(train_state)
# hack: put back the dupes
dupe_names = {}
for k, v in big_dict.items():
if v not in dupe_names:
dupe_names[v] = k
assert k in state_dict
state_dict[k] = state_dict[dupe_names[v]]
# scheduler contains optimizer and all params, load each weight only once
scheduler_state = {'scheduler': scheduler}
state.load_state_dict(scheduler_state, state_dict)
def gaussian_kernel(n, std):
from scipy import signal
gaussian_1d = signal.windows.gaussian(n, std)
gaussian_2d = np.outer(gaussian_1d, gaussian_1d)
gaussian_3d = np.outer(gaussian_2d, gaussian_1d)
gaussian_3d = gaussian_3d.reshape(n, n, n)
gaussian_3d = np.cbrt(gaussian_3d)
gaussian_3d /= gaussian_3d.max()
return gaussian_3d
def prepare_arrays(image, roi_shape=(128, 128, 128)):
assert len(roi_shape) == 3 and any(roi_shape)
image_shape = list(image.shape[2:])
result = np.zeros((1, 3, *image_shape), dtype=image.dtype)
norm_map = np.zeros_like(result)
norm_patch = gaussian_kernel(roi_shape[0], 0.125 * roi_shape[0]).astype(norm_map.dtype)
return result, norm_map, norm_patch
def get_slice(image, roi_shape=(128, 128, 128), overlap_factor=0.5):
assert len(roi_shape) == 3 and any(roi_shape)
assert 0 < overlap_factor < 1
image_shape, dim = list(image.shape[2:]), len(image.shape[2:])
strides = [int(roi_shape[i] * (1 - overlap_factor)) for i in range(dim)]
size = [(image_shape[i] - roi_shape[i]) // strides[i] + 1 for i in range(dim)]
for i in range(0, strides[0] * size[0], strides[0]):
for j in range(0, strides[1] * size[1], strides[1]):
for k in range(0, strides[2] * size[2], strides[2]):
yield i, j, k
def _get_best_indices(logits, n_best_size):
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
return list(map(lambda x: x[0], index_and_score))[:n_best_size]
def _is_punctuation(char):
if (cp := ord(char)) in range(33, 48) or cp in range(58, 65) or cp in range(91, 97) or cp in range(123, 127):
return True
return unicodedata.category(char).startswith("P")
def _is_whitespace(char):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
return unicodedata.category(char) == "Zs"
def _is_control(char):
if char == "\t" or char == "\n" or char == "\r":
return False
return unicodedata.category(char).startswith("C")
def _run_split_on_punc(text):
if text in ("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"):
return [text]
start_new_word = True
output = []
for i in range(len(text)):
if _is_punctuation(char := text[i]):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
return ["".join(x) for x in output]
def _run_strip_accents(text):
output = []
for char in unicodedata.normalize("NFD", text):
if unicodedata.category(char) != "Mn":
output.append(char)
return "".join(output)
def _clean_text(text):
output = []
for char in text:
if not ((cp := ord(char)) == 0 or cp == 0xfffd or _is_control(char)):
output.append(" " if _is_whitespace(char) else char)
return "".join(output)
def _get_final_text(pred_text, orig_text):
def _strip_spaces(text):
ns_text = ""
ns_to_s_map = OrderedDict()
for i, c in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_text)] = i
ns_text += c
return ns_text, ns_to_s_map
orig_tokens = _clean_text(orig_text).strip().split()
split_tokens = []
for token in orig_tokens:
if token not in ("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"):
token = token.lower()
token = _run_strip_accents(token)
split_tokens.extend(_run_split_on_punc(token))
tok_text = " ".join(" ".join(split_tokens).strip().split())
start_position = tok_text.find(pred_text)
if start_position == -1:
return orig_text
end_position = start_position + len(pred_text) - 1
orig_ns_text, orig_ns_to_s_map = _strip_spaces(orig_text)
tok_ns_text, tok_ns_to_s_map = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
return orig_text
tok_s_to_ns_map = {v: k for k, v in tok_ns_to_s_map.items()}
orig_start_position = None
if start_position in tok_s_to_ns_map:
if (ns_start_position := tok_s_to_ns_map[start_position]) in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
return orig_text
orig_end_position = None
if end_position in tok_s_to_ns_map:
if (ns_end_position := tok_s_to_ns_map[end_position]) in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
return orig_text
output_text = orig_text[orig_start_position:(orig_end_position + 1)]
return output_text
def get_bert_qa_prediction(features, example, start_end_logits):
prelim_predictions = []
for i, feature in enumerate(features):
for start_index in _get_best_indices(start_end_logits[i][0], 20):
for end_index in _get_best_indices(start_end_logits[i][1], 20):
if start_index >= len(feature["tokens"]) or end_index >= len(feature["tokens"]):
continue
if start_index not in feature["token_to_orig_map"] or end_index not in feature["token_to_orig_map"]:
continue
if not feature["token_is_max_context"].get(start_index, False):
continue
if end_index < start_index or end_index - start_index + 1 > 30:
continue
prelim_predictions.append({
"feature_index": i,
"start_index": start_index,
"end_index": end_index,
"start_logit": start_end_logits[i][0, start_index],
"end_logit": start_end_logits[i][1, end_index]
})
predictions = sorted(prelim_predictions, key=lambda x: (x["start_logit"] + x["end_logit"]), reverse=True)
if len(predictions) > 0:
feature = features[predictions[0]["feature_index"]]
tok_tokens = feature["tokens"][predictions[0]["start_index"]:(predictions[0]["end_index"] + 1)]
orig_doc_start = feature["token_to_orig_map"][predictions[0]["start_index"]]
orig_doc_end = feature["token_to_orig_map"][predictions[0]["end_index"]]
orig_tokens = example["context"][orig_doc_start:(orig_doc_end + 1)]
tok_text = " ".join(tok_tokens).replace(" ##", "").replace("##", "")
tok_text = " ".join(tok_text.strip().split())
orig_text = " ".join(orig_tokens)
return _get_final_text(tok_text, orig_text)
return "empty"
def get_mlperf_bert_config():
"""benchmark is BERT-large"""
ret = {"attention_probs_dropout_prob": 0.1, "hidden_dropout_prob": 0.1, "vocab_size": 30522, "type_vocab_size": 2, "max_position_embeddings": 512}
match (bert_size:=getenv("BERT_SIZE", "large")):
case "large": ret.update({"hidden_size": 1024, "intermediate_size": 4096, "num_attention_heads": 16, "num_hidden_layers": 24})
case "tiny": ret.update({"hidden_size": 128, "intermediate_size": 512, "num_attention_heads": 2, "num_hidden_layers": 2})
case _: raise RuntimeError(f"unhandled {bert_size=}")
if (bert_layers:=getenv("BERT_LAYERS")): ret["num_hidden_layers"] = bert_layers
return ret
def get_mlperf_bert_model():
from extra.models import bert
from examples.mlperf.initializers import LinearBert, EmbeddingBert, LayerNormBert
bert.Linear = LinearBert
bert.Embedding = EmbeddingBert
bert.LayerNorm = LayerNormBert
from extra.models.bert import BertForPretraining
config = get_mlperf_bert_config()
if getenv("DISABLE_DROPOUT", 0):
config["hidden_dropout_prob"] = config["attention_probs_dropout_prob"] = 0.0
return BertForPretraining(**config)
def get_fake_data_bert(BS:int):
return {
"input_ids": Tensor.empty((BS, 512), dtype=dtypes.int32, device="CPU"),
"input_mask": Tensor.empty((BS, 512), dtype=dtypes.int32, device="CPU"),
"segment_ids": Tensor.empty((BS, 512), dtype=dtypes.int32, device="CPU"),
"masked_lm_positions": Tensor.empty((BS, 76), dtype=dtypes.int32, device="CPU"),
"masked_lm_ids": Tensor.empty((BS, 76), dtype=dtypes.int32, device="CPU"),
"masked_lm_weights": Tensor.empty((BS, 76), dtype=dtypes.float32, device="CPU"),
"next_sentence_labels": Tensor.empty((BS, 1), dtype=dtypes.int32, device="CPU"),
}
def find_matches(match_quality_matrix:np.ndarray, high_threshold:float=0.5, low_threshold:float=0.4, allow_low_quality_matches:bool=False) -> np.ndarray:
BELOW_LOW_THRESHOLD, BETWEEN_THRESHOLDS = -1, -2
def _set_low_quality_matches_(matches:np.ndarray, all_matches:np.ndarray, match_quality_matrix:np.ndarray):
highest_quality_foreach_gt = np.max(match_quality_matrix, axis=1)
pred_inds_to_update = np.nonzero(match_quality_matrix == highest_quality_foreach_gt[:, None])[1]
matches[pred_inds_to_update] = all_matches[pred_inds_to_update]
assert low_threshold <= high_threshold
matched_vals, matches = match_quality_matrix.max(axis=0), match_quality_matrix.argmax(axis=0)
all_matches = np.copy(matches) if allow_low_quality_matches else None
below_low_threshold = matched_vals < low_threshold
between_thresholds = (matched_vals >= low_threshold) & (matched_vals < high_threshold)
matches[below_low_threshold] = BELOW_LOW_THRESHOLD
matches[between_thresholds] = BETWEEN_THRESHOLDS
if allow_low_quality_matches:
assert all_matches is not None
_set_low_quality_matches_(matches, all_matches, match_quality_matrix)
return matches
def box_iou(boxes1:np.ndarray, boxes2:np.ndarray) -> np.ndarray:
def _box_area(boxes:np.ndarray) -> np.ndarray: return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def _box_inter_union(boxes1:np.ndarray, boxes2:np.ndarray) -> tuple[np.ndarray, np.ndarray]:
area1, area2 = _box_area(boxes1), _box_area(boxes2)
lt, rb = np.maximum(boxes1[:, None, :2], boxes2[:, :2]), np.minimum(boxes1[:, None, 2:], boxes2[:, 2:])
wh = np.clip(rb - lt, a_min=0, a_max=None)
inter = wh[:, :, 0] * wh[:, :, 1]
union = area1[:, None] + area2 - inter
return inter, union
inter, union = _box_inter_union(boxes1, boxes2)
return inter / union
def generate_anchors(input_size:tuple[int, int], scales:Optional[tuple[Tensor, ...]]=None, aspect_ratios:Optional[tuple[Tensor, ...]]=None) -> list[np.ndarray]:
def _compute_grid_sizes(input_size:tuple[int, int]) -> np.ndarray:
return np.ceil(np.array(input_size)[None, :] / 2 ** np.arange(3, 8)[:, None])
scales = tuple((i, int(i * 2 ** (1/3)), int(i * 2 ** (2/3))) for i in 2 ** np.arange(5, 10)) if scales is None else scales
aspect_ratios = ((0.5, 1.0, 2.0),) * len(scales) if aspect_ratios is None else aspect_ratios
aspect_ratios = tuple(ar for ar in aspect_ratios)
grid_sizes = _compute_grid_sizes(input_size)
assert len(scales) == len(aspect_ratios) == len(grid_sizes), "scales, aspect_ratios, and grid_sizes must have the same length"
anchors = []
for s, ar, gs in zip(scales, aspect_ratios, grid_sizes):
s, ar = np.array(s), np.array(ar)
h_ratios = np.sqrt(ar)
w_ratios = 1 / h_ratios
ws = (w_ratios[:, None] * s[None, :]).reshape(-1)
hs = (h_ratios[:, None] * s[None, :]).reshape(-1)
base_anchors = (np.stack([-ws, -hs, ws, hs], axis=1) / 2).round()
stride_h, stride_w = input_size[0] // gs[0], input_size[1] // gs[1]
shifts_x, shifts_y = np.meshgrid(np.arange(gs[1]) * stride_w, np.arange(gs[0]) * stride_h)
shifts_x, shifts_y = shifts_x.reshape(-1), shifts_y.reshape(-1)
shifts = np.stack([shifts_x, shifts_y, shifts_x, shifts_y], axis=1, dtype=np.float32)
anchors.append((shifts[:, None] + base_anchors[None, :]).reshape(-1, 4))
return anchors