openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

61 lines
2.0 KiB

import re
import string
from collections import Counter
def levenshtein(a, b):
n, m = len(a), len(b)
if n > m:
a, b, n, m = b, a, m, n
current = list(range(n + 1))
for i in range(1, m + 1):
previous, current = current, [i] + [0] * n
for j in range(1, n + 1):
add, delete = previous[j] + 1, current[j - 1] + 1
change = previous[j - 1]
if a[j - 1] != b[i - 1]:
change = change + 1
current[j] = min(add, delete, change)
return current[n]
def word_error_rate(x, y):
scores = words = 0
for h, r in zip(x, y):
h_list = h.split()
r_list = r.split()
words += len(r_list)
scores += levenshtein(h_list, r_list)
return float(scores) / words, float(scores), words
def one_hot(x):
return x.one_hot(3).squeeze(1).permute(0, 4, 1, 2, 3)
def dice_score(prediction, target, channel_axis=1, smooth_nr=1e-6, smooth_dr=1e-6, argmax=True, to_one_hot_x=True):
channel_axis, reduce_axis = 1, tuple(range(2, len(prediction.shape)))
if argmax: prediction = prediction.argmax(axis=channel_axis)
else: prediction = prediction.softmax(axis=channel_axis)
if to_one_hot_x: prediction = one_hot(prediction)
target = one_hot(target)
prediction, target = prediction[:, 1:], target[:, 1:]
assert prediction.shape == target.shape, f"prediction ({prediction.shape}) and target ({target.shape}) shapes do not match"
intersection = (prediction * target).sum(axis=reduce_axis)
target_sum = target.sum(axis=reduce_axis)
prediction_sum = prediction.sum(axis=reduce_axis)
result = (2.0 * intersection + smooth_nr) / (target_sum + prediction_sum + smooth_dr)
return result
def normalize_string(s):
s = "".join(c for c in s.lower() if c not in string.punctuation)
s = re.sub(r'\b(a|an|the)\b', ' ', s)
return " ".join(s.split())
def f1_score(x, y):
xt = normalize_string(x).split()
yt = normalize_string(y).split()
ct = Counter(xt) & Counter(yt)
if (ns := sum(ct.values())) == 0:
return 0.0
p = ns / len(xt)
r = ns / len(yt)
return 2 * p * r / (p + r)