You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
252 lines
9.6 KiB
252 lines
9.6 KiB
import time
|
|
start = time.perf_counter()
|
|
from pathlib import Path
|
|
import numpy as np
|
|
from tinygrad import Tensor, Device, dtypes, GlobalCounters, TinyJit
|
|
from tinygrad.nn.state import get_parameters, load_state_dict, safe_load
|
|
from tinygrad.helpers import getenv
|
|
def tlog(x): print(f"{x:25s} @ {time.perf_counter()-start:5.2f}s")
|
|
|
|
def eval_resnet():
|
|
Tensor.no_grad = True
|
|
# Resnet50-v1.5
|
|
from extra.models.resnet import ResNet50
|
|
tlog("imports")
|
|
GPUS = [f'{Device.DEFAULT}:{i}' for i in range(getenv("GPUS", 6))]
|
|
for x in GPUS: Device[x]
|
|
tlog("got devices") # NOTE: this is faster with rocm-smi running
|
|
|
|
class ResnetRunner:
|
|
def __init__(self, device=None):
|
|
self.mdl = ResNet50()
|
|
for x in get_parameters(self.mdl) if device else []: x.to_(device)
|
|
if (fn:=getenv("RESNET_MODEL", "")): load_state_dict(self.mdl, safe_load(fn))
|
|
else: self.mdl.load_from_pretrained()
|
|
self.input_mean = Tensor([0.485, 0.456, 0.406], device=device).reshape(1, -1, 1, 1)
|
|
self.input_std = Tensor([0.229, 0.224, 0.225], device=device).reshape(1, -1, 1, 1)
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
x = x.permute([0,3,1,2]).cast(dtypes.float32) / 255.0
|
|
x -= self.input_mean
|
|
x /= self.input_std
|
|
return self.mdl(x).log_softmax().argmax(axis=1).realize()
|
|
|
|
mdl = TinyJit(ResnetRunner(GPUS))
|
|
tlog("loaded models")
|
|
|
|
# evaluation on the mlperf classes of the validation set from imagenet
|
|
from examples.mlperf.dataloader import batch_load_resnet
|
|
iterator = batch_load_resnet(getenv("BS", 128*6), val=getenv("VAL", 1), shuffle=False, pad_first_batch=True)
|
|
def data_get():
|
|
x,y,cookie = next(iterator)
|
|
return x.shard(GPUS, axis=0).realize(), y, cookie
|
|
n,d = 0,0
|
|
proc = data_get()
|
|
tlog("loaded initial data")
|
|
st = time.perf_counter()
|
|
while proc is not None:
|
|
GlobalCounters.reset()
|
|
proc = (mdl(proc[0]), proc[1], proc[2]) # this frees the images
|
|
run = time.perf_counter()
|
|
# load the next data here
|
|
try: next_proc = data_get()
|
|
except StopIteration: next_proc = None
|
|
nd = time.perf_counter()
|
|
y = np.array(proc[1])
|
|
proc = (proc[0].numpy() == y) & (y != -1) # this realizes the models and frees the cookies
|
|
n += proc.sum()
|
|
d += (y != -1).sum()
|
|
et = time.perf_counter()
|
|
tlog(f"****** {n:5d}/{d:5d} {n*100.0/d:.2f}% -- {(run-st)*1000:7.2f} ms to enqueue, {(et-run)*1000:7.2f} ms to realize ({(nd-run)*1000:7.2f} ms fetching). {(len(proc))/(et-st):8.2f} examples/sec. {GlobalCounters.global_ops*1e-12/(et-st):5.2f} TFLOPS")
|
|
st = et
|
|
proc, next_proc = next_proc, None
|
|
tlog("done")
|
|
|
|
def eval_unet3d():
|
|
# UNet3D
|
|
from extra.models.unet3d import UNet3D
|
|
from extra.datasets.kits19 import iterate, sliding_window_inference, get_val_files
|
|
from examples.mlperf.metrics import dice_score
|
|
mdl = UNet3D()
|
|
mdl.load_from_pretrained()
|
|
s = 0
|
|
st = time.perf_counter()
|
|
for i, (image, label) in enumerate(iterate(get_val_files()), start=1):
|
|
mt = time.perf_counter()
|
|
pred, label = sliding_window_inference(mdl, image, label)
|
|
et = time.perf_counter()
|
|
print(f"{(mt-st)*1000:.2f} ms loading data, {(et-mt)*1000:.2f} ms to run model")
|
|
s += dice_score(Tensor(pred), Tensor(label)).mean().item()
|
|
print(f"****** {s:.2f}/{i} {s/i:.5f} Mean DICE score")
|
|
st = time.perf_counter()
|
|
|
|
def eval_retinanet():
|
|
# RetinaNet with ResNeXt50_32X4D
|
|
from extra.models.resnet import ResNeXt50_32X4D
|
|
from extra.models.retinanet import RetinaNet
|
|
mdl = RetinaNet(ResNeXt50_32X4D())
|
|
mdl.load_from_pretrained()
|
|
|
|
input_mean = Tensor([0.485, 0.456, 0.406]).reshape(1, -1, 1, 1)
|
|
input_std = Tensor([0.229, 0.224, 0.225]).reshape(1, -1, 1, 1)
|
|
def input_fixup(x):
|
|
x = x.permute([0,3,1,2]) / 255.0
|
|
x -= input_mean
|
|
x /= input_std
|
|
return x
|
|
|
|
from extra.datasets.openimages import download_dataset, iterate, BASEDIR
|
|
from pycocotools.coco import COCO
|
|
from pycocotools.cocoeval import COCOeval
|
|
from contextlib import redirect_stdout
|
|
coco = COCO(download_dataset(base_dir:=getenv("BASE_DIR", BASEDIR), 'validation'))
|
|
coco_eval = COCOeval(coco, iouType="bbox")
|
|
coco_evalimgs, evaluated_imgs, ncats, narea = [], [], len(coco_eval.params.catIds), len(coco_eval.params.areaRng)
|
|
|
|
from tinygrad.engine.jit import TinyJit
|
|
mdlrun = TinyJit(lambda x: mdl(input_fixup(x)).realize())
|
|
|
|
n, bs = 0, 8
|
|
st = time.perf_counter()
|
|
for x, targets in iterate(coco, base_dir, bs):
|
|
dat = Tensor(x.astype(np.float32))
|
|
mt = time.perf_counter()
|
|
if dat.shape[0] == bs:
|
|
outs = mdlrun(dat).numpy()
|
|
else:
|
|
mdlrun._jit_cache = []
|
|
outs = mdl(input_fixup(dat)).numpy()
|
|
et = time.perf_counter()
|
|
predictions = mdl.postprocess_detections(outs, input_size=dat.shape[1:3], orig_image_sizes=[t["image_size"] for t in targets])
|
|
ext = time.perf_counter()
|
|
n += len(targets)
|
|
print(f"[{n}/{len(coco.imgs)}] == {(mt-st)*1000:.2f} ms loading data, {(et-mt)*1000:.2f} ms to run model, {(ext-et)*1000:.2f} ms for postprocessing")
|
|
img_ids = [t["image_id"] for t in targets]
|
|
coco_results = [{"image_id": targets[i]["image_id"], "category_id": label, "bbox": box.tolist(), "score": score}
|
|
for i, prediction in enumerate(predictions) for box, score, label in zip(*prediction.values())]
|
|
with redirect_stdout(None):
|
|
coco_eval.cocoDt = coco.loadRes(coco_results)
|
|
coco_eval.params.imgIds = img_ids
|
|
coco_eval.evaluate()
|
|
evaluated_imgs.extend(img_ids)
|
|
coco_evalimgs.append(np.array(coco_eval.evalImgs).reshape(ncats, narea, len(img_ids)))
|
|
st = time.perf_counter()
|
|
|
|
coco_eval.params.imgIds = evaluated_imgs
|
|
coco_eval._paramsEval.imgIds = evaluated_imgs
|
|
coco_eval.evalImgs = list(np.concatenate(coco_evalimgs, -1).flatten())
|
|
coco_eval.accumulate()
|
|
coco_eval.summarize()
|
|
|
|
def eval_rnnt():
|
|
# RNN-T
|
|
from extra.models.rnnt import RNNT
|
|
mdl = RNNT()
|
|
mdl.load_from_pretrained()
|
|
|
|
from extra.datasets.librispeech import iterate
|
|
from examples.mlperf.metrics import word_error_rate
|
|
|
|
LABELS = [" ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "'"]
|
|
|
|
c = 0
|
|
scores = 0
|
|
words = 0
|
|
st = time.perf_counter()
|
|
for X, Y in iterate():
|
|
mt = time.perf_counter()
|
|
tt = mdl.decode(Tensor(X[0]), Tensor([X[1]]))
|
|
et = time.perf_counter()
|
|
print(f"{(mt-st)*1000:.2f} ms loading data, {(et-mt)*1000:.2f} ms to run model")
|
|
for n, t in enumerate(tt):
|
|
tnp = np.array(t)
|
|
_, scores_, words_ = word_error_rate(["".join([LABELS[int(tnp[i])] for i in range(tnp.shape[0])])], [Y[n]])
|
|
scores += scores_
|
|
words += words_
|
|
c += len(tt)
|
|
print(f"WER: {scores/words}, {words} words, raw scores: {scores}, c: {c}")
|
|
st = time.perf_counter()
|
|
|
|
def eval_bert():
|
|
# Bert-QA
|
|
from extra.models.bert import BertForQuestionAnswering
|
|
mdl = BertForQuestionAnswering()
|
|
mdl.load_from_pretrained()
|
|
|
|
@TinyJit
|
|
def run(input_ids, input_mask, segment_ids):
|
|
return mdl(input_ids, input_mask, segment_ids).realize()
|
|
|
|
from extra.datasets.squad import iterate
|
|
from examples.mlperf.helpers import get_bert_qa_prediction
|
|
from examples.mlperf.metrics import f1_score
|
|
from transformers import BertTokenizer
|
|
|
|
tokenizer = BertTokenizer(str(Path(__file__).parents[2] / "extra/weights/bert_vocab.txt"))
|
|
|
|
c = 0
|
|
f1 = 0.0
|
|
st = time.perf_counter()
|
|
for X, Y in iterate(tokenizer):
|
|
mt = time.perf_counter()
|
|
outs = []
|
|
for x in X:
|
|
outs.append(run(Tensor(x["input_ids"]), Tensor(x["input_mask"]), Tensor(x["segment_ids"])).numpy())
|
|
et = time.perf_counter()
|
|
print(f"{(mt-st)*1000:.2f} ms loading data, {(et-mt)*1000:.2f} ms to run model over {len(X)} features")
|
|
|
|
pred = get_bert_qa_prediction(X, Y, outs)
|
|
print(f"pred: {pred}\nans: {Y['answers']}")
|
|
f1 += max([f1_score(pred, ans) for ans in Y["answers"]])
|
|
c += 1
|
|
print(f"f1: {f1/c}, raw: {f1}, c: {c}\n")
|
|
|
|
st = time.perf_counter()
|
|
|
|
def eval_mrcnn():
|
|
from tqdm import tqdm
|
|
from extra.models.mask_rcnn import MaskRCNN
|
|
from extra.models.resnet import ResNet
|
|
from extra.datasets.coco import BASEDIR, images, convert_prediction_to_coco_bbox, convert_prediction_to_coco_mask, accumulate_predictions_for_coco, evaluate_predictions_on_coco, iterate
|
|
from examples.mask_rcnn import compute_prediction_batched, Image
|
|
mdl = MaskRCNN(ResNet(50, num_classes=None, stride_in_1x1=True))
|
|
mdl.load_from_pretrained()
|
|
|
|
bbox_output = '/tmp/results_bbox.json'
|
|
mask_output = '/tmp/results_mask.json'
|
|
|
|
accumulate_predictions_for_coco([], bbox_output, rm=True)
|
|
accumulate_predictions_for_coco([], mask_output, rm=True)
|
|
|
|
#TODO: bs > 1 not as accurate
|
|
bs = 1
|
|
|
|
for batch in tqdm(iterate(images, bs=bs), total=len(images)//bs):
|
|
batch_imgs = []
|
|
for image_row in batch:
|
|
image_name = image_row['file_name']
|
|
img = Image.open(BASEDIR/f'val2017/{image_name}').convert("RGB")
|
|
batch_imgs.append(img)
|
|
batch_result = compute_prediction_batched(batch_imgs, mdl)
|
|
for image_row, result in zip(batch, batch_result):
|
|
image_name = image_row['file_name']
|
|
box_pred = convert_prediction_to_coco_bbox(image_name, result)
|
|
mask_pred = convert_prediction_to_coco_mask(image_name, result)
|
|
accumulate_predictions_for_coco(box_pred, bbox_output)
|
|
accumulate_predictions_for_coco(mask_pred, mask_output)
|
|
del batch_imgs
|
|
del batch_result
|
|
|
|
evaluate_predictions_on_coco(bbox_output, iou_type='bbox')
|
|
evaluate_predictions_on_coco(mask_output, iou_type='segm')
|
|
|
|
if __name__ == "__main__":
|
|
# inference only
|
|
Tensor.training = False
|
|
Tensor.no_grad = True
|
|
|
|
models = getenv("MODEL", "resnet,retinanet,unet3d,rnnt,bert,mrcnn").split(",")
|
|
for m in models:
|
|
nm = f"eval_{m}"
|
|
if nm in globals():
|
|
print(f"eval {m}")
|
|
globals()[nm]()
|
|
|