openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

136 lines
4.5 KiB

#!/usr/bin/env python
#inspired by https://github.com/Matuzas77/MNIST-0.17/blob/master/MNIST_final_solution.ipynb
import sys
import numpy as np
from tinygrad.nn.state import get_parameters
from tinygrad.tensor import Tensor
from tinygrad.nn import BatchNorm2d, optim
from tinygrad.helpers import getenv
from extra.datasets import fetch_mnist
from extra.augment import augment_img
from extra.training import train, evaluate
GPU = getenv("GPU")
QUICK = getenv("QUICK")
DEBUG = getenv("DEBUG")
class SqueezeExciteBlock2D:
def __init__(self, filters):
self.filters = filters
self.weight1 = Tensor.scaled_uniform(self.filters, self.filters//32)
self.bias1 = Tensor.scaled_uniform(1,self.filters//32)
self.weight2 = Tensor.scaled_uniform(self.filters//32, self.filters)
self.bias2 = Tensor.scaled_uniform(1, self.filters)
def __call__(self, input):
se = input.avg_pool2d(kernel_size=(input.shape[2], input.shape[3])) #GlobalAveragePool2D
se = se.reshape(shape=(-1, self.filters))
se = se.dot(self.weight1) + self.bias1
se = se.relu()
se = se.dot(self.weight2) + self.bias2
se = se.sigmoid().reshape(shape=(-1,self.filters,1,1)) #for broadcasting
se = input.mul(se)
return se
class ConvBlock:
def __init__(self, h, w, inp, filters=128, conv=3):
self.h, self.w = h, w
self.inp = inp
#init weights
self.cweights = [Tensor.scaled_uniform(filters, inp if i==0 else filters, conv, conv) for i in range(3)]
self.cbiases = [Tensor.scaled_uniform(1, filters, 1, 1) for i in range(3)]
#init layers
self._bn = BatchNorm2d(128)
self._seb = SqueezeExciteBlock2D(filters)
def __call__(self, input):
x = input.reshape(shape=(-1, self.inp, self.w, self.h))
for cweight, cbias in zip(self.cweights, self.cbiases):
x = x.pad(padding=[1,1,1,1]).conv2d(cweight).add(cbias).relu()
x = self._bn(x)
x = self._seb(x)
return x
class BigConvNet:
def __init__(self):
self.conv = [ConvBlock(28,28,1), ConvBlock(28,28,128), ConvBlock(14,14,128)]
self.weight1 = Tensor.scaled_uniform(128,10)
self.weight2 = Tensor.scaled_uniform(128,10)
def parameters(self):
if DEBUG: #keeping this for a moment
pars = [par for par in get_parameters(self) if par.requires_grad]
no_pars = 0
for par in pars:
print(par.shape)
no_pars += np.prod(par.shape)
print('no of parameters', no_pars)
return pars
else:
return get_parameters(self)
def save(self, filename):
with open(filename+'.npy', 'wb') as f:
for par in get_parameters(self):
#if par.requires_grad:
np.save(f, par.numpy())
def load(self, filename):
with open(filename+'.npy', 'rb') as f:
for par in get_parameters(self):
#if par.requires_grad:
try:
par.numpy()[:] = np.load(f)
if GPU:
par.gpu()
except:
print('Could not load parameter')
def forward(self, x):
x = self.conv[0](x)
x = self.conv[1](x)
x = x.avg_pool2d(kernel_size=(2,2))
x = self.conv[2](x)
x1 = x.avg_pool2d(kernel_size=(14,14)).reshape(shape=(-1,128)) #global
x2 = x.max_pool2d(kernel_size=(14,14)).reshape(shape=(-1,128)) #global
xo = x1.dot(self.weight1) + x2.dot(self.weight2)
return xo
if __name__ == "__main__":
lrs = [1e-4, 1e-5] if QUICK else [1e-3, 1e-4, 1e-5, 1e-5]
epochss = [2, 1] if QUICK else [13, 3, 3, 1]
BS = 32
lmbd = 0.00025
lossfn = lambda out,y: out.sparse_categorical_crossentropy(y) + lmbd*(model.weight1.abs() + model.weight2.abs()).sum()
X_train, Y_train, X_test, Y_test = fetch_mnist()
X_train = X_train.reshape(-1, 28, 28).astype(np.uint8)
X_test = X_test.reshape(-1, 28, 28).astype(np.uint8)
steps = len(X_train)//BS
np.random.seed(1337)
if QUICK:
steps = 1
X_test, Y_test = X_test[:BS], Y_test[:BS]
model = BigConvNet()
if len(sys.argv) > 1:
try:
model.load(sys.argv[1])
print('Loaded weights "'+sys.argv[1]+'", evaluating...')
evaluate(model, X_test, Y_test, BS=BS)
except:
print('could not load weights "'+sys.argv[1]+'".')
if GPU:
params = get_parameters(model)
[x.gpu_() for x in params]
for lr, epochs in zip(lrs, epochss):
optimizer = optim.Adam(model.parameters(), lr=lr)
for epoch in range(1,epochs+1):
#first epoch without augmentation
X_aug = X_train if epoch == 1 else augment_img(X_train)
train(model, X_aug, Y_train, optimizer, steps=steps, lossfn=lossfn, BS=BS)
accuracy = evaluate(model, X_test, Y_test, BS=BS)
model.save(f'examples/checkpoint{accuracy * 1e6:.0f}')