openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

199 lines
5.6 KiB

import json
import pathlib
import zipfile
import numpy as np
from tinygrad.helpers import fetch
import pycocotools._mask as _mask
from examples.mask_rcnn import Masker
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
iou = _mask.iou
merge = _mask.merge
frPyObjects = _mask.frPyObjects
BASEDIR = pathlib.Path(__file__).parent / "COCO"
BASEDIR.mkdir(exist_ok=True)
def create_dict(key_row, val_row, rows): return {row[key_row]:row[val_row] for row in rows}
if not pathlib.Path(BASEDIR/'val2017').is_dir():
fn = fetch('http://images.cocodataset.org/zips/val2017.zip')
with zipfile.ZipFile(fn, 'r') as zip_ref:
zip_ref.extractall(BASEDIR)
fn.unlink()
if not pathlib.Path(BASEDIR/'annotations').is_dir():
fn = fetch('http://images.cocodataset.org/annotations/annotations_trainval2017.zip')
with zipfile.ZipFile(fn, 'r') as zip_ref:
zip_ref.extractall(BASEDIR)
fn.unlink()
with open(BASEDIR/'annotations/instances_val2017.json', 'r') as f:
annotations_raw = json.loads(f.read())
images = annotations_raw['images']
categories = annotations_raw['categories']
annotations = annotations_raw['annotations']
file_name_to_id = create_dict('file_name', 'id', images)
id_to_width = create_dict('id', 'width', images)
id_to_height = create_dict('id', 'height', images)
json_category_id_to_contiguous_id = {v['id']: i + 1 for i, v in enumerate(categories)}
contiguous_category_id_to_json_id = {v:k for k,v in json_category_id_to_contiguous_id.items()}
def encode(bimask):
if len(bimask.shape) == 3:
return _mask.encode(bimask)
elif len(bimask.shape) == 2:
h, w = bimask.shape
return _mask.encode(bimask.reshape((h, w, 1), order='F'))[0]
def decode(rleObjs):
if type(rleObjs) == list:
return _mask.decode(rleObjs)
else:
return _mask.decode([rleObjs])[:,:,0]
def area(rleObjs):
if type(rleObjs) == list:
return _mask.area(rleObjs)
else:
return _mask.area([rleObjs])[0]
def toBbox(rleObjs):
if type(rleObjs) == list:
return _mask.toBbox(rleObjs)
else:
return _mask.toBbox([rleObjs])[0]
def convert_prediction_to_coco_bbox(file_name, prediction):
coco_results = []
try:
original_id = file_name_to_id[file_name]
if len(prediction) == 0:
return coco_results
image_width = id_to_width[original_id]
image_height = id_to_height[original_id]
prediction = prediction.resize((image_width, image_height))
prediction = prediction.convert("xywh")
boxes = prediction.bbox.numpy().tolist()
scores = prediction.get_field("scores").numpy().tolist()
labels = prediction.get_field("labels").numpy().tolist()
mapped_labels = [contiguous_category_id_to_json_id[int(i)] for i in labels]
coco_results.extend(
[
{
"image_id": original_id,
"category_id": mapped_labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
except Exception as e:
print(file_name, e)
return coco_results
masker = Masker(threshold=0.5, padding=1)
def convert_prediction_to_coco_mask(file_name, prediction):
coco_results = []
try:
original_id = file_name_to_id[file_name]
if len(prediction) == 0:
return coco_results
image_width = id_to_width[original_id]
image_height = id_to_height[original_id]
prediction = prediction.resize((image_width, image_height))
masks = prediction.get_field("mask")
scores = prediction.get_field("scores").numpy().tolist()
labels = prediction.get_field("labels").numpy().tolist()
masks = masker([masks], [prediction])[0].numpy()
rles = [
encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
for mask in masks
]
for rle in rles:
rle["counts"] = rle["counts"].decode("utf-8")
mapped_labels = [contiguous_category_id_to_json_id[int(i)] for i in labels]
coco_results.extend(
[
{
"image_id": original_id,
"category_id": mapped_labels[k],
"segmentation": rle,
"score": scores[k],
}
for k, rle in enumerate(rles)
]
)
except Exception as e:
print(file_name, e)
return coco_results
def accumulate_predictions_for_coco(coco_results, json_result_file, rm=False):
path = pathlib.Path(json_result_file)
if rm and path.exists(): path.unlink()
with open(path, "a") as f:
for s in coco_results:
f.write(json.dumps(s))
f.write('\n')
def remove_dup(l):
seen = set()
seen_add = seen.add
return [x for x in l if not (x in seen or seen_add(x))]
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
return float(obj)
if isinstance(obj, np.ndarray):
return obj.tolist()
return super(NpEncoder, self).default(obj)
def evaluate_predictions_on_coco(json_result_file, iou_type="bbox"):
coco_results = []
with open(json_result_file, "r") as f:
for line in f:
coco_results.append(json.loads(line))
coco_gt = COCO(str(BASEDIR/'annotations/instances_val2017.json'))
set_of_json = remove_dup([json.dumps(d, cls=NpEncoder) for d in coco_results])
unique_list = [json.loads(s) for s in set_of_json]
with open(f'{json_result_file}.flattend', "w") as f:
json.dump(unique_list, f)
coco_dt = coco_gt.loadRes(str(f'{json_result_file}.flattend'))
coco_eval = COCOeval(coco_gt, coco_dt, iou_type)
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
return coco_eval
def iterate(files, bs=1):
batch = []
for file in files:
batch.append(file)
if len(batch) >= bs: yield batch; batch = []
if len(batch) > 0: yield batch; batch = []